Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 123–133 | Cite as

Microstructure tailoring of combustion-derived Ni-GDC and Ni-SDC composites as anode materials for intermediate temperature solid oxide fuel cells

  • Tina Skalar
  • Klementina Zupan
  • Marjan MarinšekEmail author


The Ni-GDC and Ni-SDC cermets with tailored microstructures are potential candidates for anode materials in intermediate temperature SOFCs. In this work, a modified citrate-nitrate combustion synthesis was employed for the preparation of cermets. It was demonstrated that the preparation technique ensured randomly distributed phases of NiO and GDC or SDC on a nanometre scale. Microstructure analysis revealed that during sintering under various conditions (from 1150 to 1400 °C), the NiO phase grew faster than the GDC or SDC phases; however, phases remained well within the sub-micrometre range. In order to describe the overall relative electrical conductivity of the cermets, the sine-wave approximation of conductivity change for porous materials was used. Higher relative densities of the cermets resulted in improved electrical conductivity. The most appropriate sintering temperature, which ensured relatively small grains and at the same time sufficiently high electrical conductivity, for both materials was determined to be 1200 °C.


Solid oxide fuel cell Combustion synthesis Microstructure development Electrical properties 



This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through grants P1–0175.


  1. 1.
    Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)CrossRefGoogle Scholar
  2. 2.
    Tietz, F., Arul Raj, I., Jungen, W., Stöver, D.: High-temperature superconductor materials for contact layers in solid oxide fuel cells: I. Sintering behaviour and physical properties at operating temperatures. Acta Mater. 49, 803–810 (2001)CrossRefGoogle Scholar
  3. 3.
    Suzuki, T., Hasan, Z., Funahashi, Y., Yamaguchi, T., Fujishiro, Y., et al.: Impact of anode microstructure on solid oxide fuel cells. Sci. Mag. 325, 852–855 (2009)Google Scholar
  4. 4.
    Yin, Y., Li, S., Xia, C., Meng, G.: Electrochemical performance of gel-cast NiO–SDC composite anodes in low-temperature SOFCs. Electrochim. Acta. 51, 2594–2598 (2006)CrossRefGoogle Scholar
  5. 5.
    Li, J., Ikegami, T., Mor, T.: Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Mater. 52, 2221–2228 (2004)CrossRefGoogle Scholar
  6. 6.
    Misono, T., Murata, K., Fukui, T., Chaichanawong, J., Sato, H., et al.: Ni-SDC cermet anode fabricated from NiO-SDC composite powder for intermediate temperature SOFC. J. Power Sources. 157, 754–757 (2006)CrossRefGoogle Scholar
  7. 7.
    Hui, S., Roller, J., Yick, S., Zhang, X., Deces-Petit, C., et al.: A brief of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources. 172, 493–502 (2007)CrossRefGoogle Scholar
  8. 8.
    Wang, Z.M., Li, Y.D., Schwank, J.W.: Evaluation of Ni/SDC as anode material for dry CH4 fueled solid oxide fuel cells. J. Power Sources. 248, 239–245 (2014)CrossRefGoogle Scholar
  9. 9.
    Yan, A., Phongaksorn, M., Nativel, D., Croiset, E.: Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells fueled with methane. J. Power Sources. 210, 374–380 (2012)CrossRefGoogle Scholar
  10. 10.
    Sun, C., Stimming, U.: Recent anode advances in solid oxide fuel cells. J. Power Sources. 171, 247–260 (2007)CrossRefGoogle Scholar
  11. 11.
    Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies, review article. Nature. 414, 345–352 (2001)CrossRefGoogle Scholar
  12. 12.
    Torrens, R.S., Sammes, N.M., Tompsett, G.A.: Characterisation of (CeO2)0,8(GdO1,5)0,2 synthesized using various techniques. Solid State Ionics. 111, 9–15 (1998)CrossRefGoogle Scholar
  13. 13.
    Chen, M., Kim, B.H., Xu, Q., Nam, O.J., Ko, J.H.: Synthesis and performances of Ni-SDC Cermets for IT-SOFC anode. J. Eur. Ceram. Soc. 28, 2947–2953 (2008)CrossRefGoogle Scholar
  14. 14.
    Chen, M., Kim, B.H., Xu, Q., Ahn, B.K., Kang, W.J., et al.: Synthesis and electrical properties of Ce0.8Sm0.2O1.9 ceramics for IT-SOFC electrolytes by urea-combustion technique. Ceram. Int. 35, 1335–1343 (2009)CrossRefGoogle Scholar
  15. 15.
    Wright, J., Virkar, A.: Conductivity of porous Sm2O3-doped CeO2 as a function of temperature and oxygen partial pressure. J. Power Sources. 196, 6118–6124 (2011)CrossRefGoogle Scholar
  16. 16.
    Sandoval, M.V., Matta, A., Matencio, T., Domingues, R.Z., Ludwig, G.A., et al.: Barium-modified NiO–YSZ/NiO–GDC cermet as new anode material for solid oxide fuel cells (SOFC). Solid State Ionics. 261, 36–44 (2014)CrossRefGoogle Scholar
  17. 17.
    Jung, W., Park, H., Kang, Y., Yoon, D.: Lowering the sintering temperature of Gd-doped ceria by mechanochemical activation, short communication. Ceram. Int. 36, 371–374 (2010)CrossRefGoogle Scholar
  18. 18.
    Faro, M.L., Rosa, D.L., Antonucci, V., Arico, A.S.: Intermediate temperature solid oxide fuel cell electrolytes. J. Indian Inst. Sci. 89, 363–381 (2009)Google Scholar
  19. 19.
    Ding, C., Sato, K., Mizusaki, J., Hashida, T.: A comparative study of NiO-Ce0.9Gd0.1O1.95 nanocomposite powders synthesized by hydroxide and oxalate co-precipitation methods. Ceram. Int. 38, 85–92 (2012)CrossRefGoogle Scholar
  20. 20.
    Mogensen, M., Sammes, N.M., Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics. 129, 63–94 (2000)CrossRefGoogle Scholar
  21. 21.
    Tian, D., Chen, Y., Yu, W., Yu, L., Lin, B.: A robust NiO-Sm0.2Ce0.8O1.9 anode for direct-methane solid oxide fuel cell. Mater. Res. Bull. 71, 1–6 (2005)CrossRefGoogle Scholar
  22. 22.
    Niakolas, D.K., Athanasiou, M., Dracopoulos, V., Tsiaoussis, I., Bebelis, S., et al.: Study of the synergistic interaction between nickel, gold and molybdenum in novel modified NiO/GDC cermets, possible anode materials for CH4 fueled SOFCs. Appl. Catal. A Gen. 456, 223–232 (2013)CrossRefGoogle Scholar
  23. 23.
    Yin, Y., Zhu, W., Xia, C., Meng, G.: Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells. J. Power Sources. 132, 36–41 (2004)CrossRefGoogle Scholar
  24. 24.
    Grgicak, C.M., Green, R.G., Du, W.F., Giorgi, J.B.: Synthesis and characterization of NiO-YSZ anode materials: precipitation, calcination and the effects on sintering. J. Am. Ceram. Soc. 88, 3081–3087 (2005)CrossRefGoogle Scholar
  25. 25.
    Shao, Z., Zhou, W., Zhu, Z.: Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog. Mater. Sci. 57, 804–874 (2012)CrossRefGoogle Scholar
  26. 26.
    Knag, I., Kang, Y., Yoon, S., Bae, G., Bae, J.: The operating characteristics of solid oxide fuel cells driven by diesel autothermal reformate. Int. J. Hydrogen. Energy. 33, 6298–6307 (2008)CrossRefGoogle Scholar
  27. 27.
    Brandon, N.P., Skinner, S., Steele, B.C.H.: Recent advantages in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRefGoogle Scholar
  28. 28.
    Chavan, A.U., Jadhav, L.D., Jamale, A.P., Patil, S.P., Bhosale, C.H., et al.: Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceram. Int. 38, 3191–3196 (2012)CrossRefGoogle Scholar
  29. 29.
    Gil, V., Moure, C., Tartaj, J.: Sinterability, microstructures and electrical properties of Ni/Gd-doped ceria cermets used as anode materials for SOFCs. J. Eur. Ceram. Soc. 27, 4205–4209 (2007)CrossRefGoogle Scholar
  30. 30.
    Covin, P.I., Petit, C.T.G., Lan, R., Irvine, J.T.S., Tao, S.: Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energy Mater. 1, 314–332 (2011)CrossRefGoogle Scholar
  31. 31.
    Holzer, L., Münch, B., Iwanschitz, B., Cantoni, M., Hocker, T., et al.: Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for solid oxide fuel cells. J. Power Sources. 196, 7076–7089 (2011)CrossRefGoogle Scholar
  32. 32.
    Jonardhanan, V.M., Heuveline, V., Deutchmann, O.: Three-phase boundary length in solid-oxide fuel cells: a mathematical model. J. Power Sources. 178, 368–372 (2008)CrossRefGoogle Scholar
  33. 33.
    Jiang, S.P., Duan, Y.Y., Love, J.G.: Fabrication of high-performance Ni/Y2O3 - ZrO2 cermet anodes of solid oxide fuel cells by ion impregnation. J. Electrochem. Soc. 149, A1175–A1183 (2002)CrossRefGoogle Scholar
  34. 34.
    Li, D., Jin, H.B., Cao, M.S., Chen, T., Dou, Y.K., et al.: Production of Ni-doped SiC nanopowders and their dielectric properties. J. Am. Ceram. Soc. 94, 1523–1527 (2011)CrossRefGoogle Scholar
  35. 35.
    Macedo, D.A., Souza, G.L., Cela, B., Paskocimas, C.A., Martinelli, A.E., et al.: A versatile route for the preparation Ni-GDC cermets from nanocomposite powders. Ceram. Int. 39, 4321–4328 (2013)CrossRefGoogle Scholar
  36. 36.
    Zhang, X., Ohara, S., Maric, R., Mukai, K., Fukui, T., et al.: Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte. J. Power Sources. 83, 170–177 (1999)CrossRefGoogle Scholar
  37. 37.
    Suda, S., Kawahara, K., Kawano, M., Yoshida, H., Inagaki, T.: Preparation of matrix-type nickel oxide/samarium-doped ceria composite particles by spray pyrolysis. J. Am. Ceram. Soc. 90, 1094–1100 (2007)CrossRefGoogle Scholar
  38. 38.
    Chen, J.C., Hwang, B.H.: Microstructure and properties of the Ni–CGO composite anodes prepared by the electrostatic-assisted ultrasonic spray pyrolysis method. J. Am. Ceram. Soc. 91, 97–102 (2008)CrossRefGoogle Scholar
  39. 39.
    Shih, S., Li, G., Cockayne, D., Borisenko, K.: Mechanism of dopant distribution: an example of nickel-doped ceria nanoparticles. Scr. Mater. 61, 832–835 (2009)CrossRefGoogle Scholar
  40. 40.
    Ding, C., Lin, H., Sato, K., Hashida, T.: Synthesis of NiO-Ce0.9Gd0.1O1.95 nanocomposite powders for low temperature solid oxide fuel cell anodes by co-precipitation. Scr. Mater. 60, 254–256 (2009)CrossRefGoogle Scholar
  41. 41.
    Fang, X., Zhu, G., Xia, C., Liu, X., Meng, G.: Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation. Solid State Ionics. 168, 31–36 (2004)CrossRefGoogle Scholar
  42. 42.
    Sugihara, K., Asamoto, M., Itagaki, Y., Takemasa, T., Yamaguchi, S., et al.: A quantitative analysis of influence of Ni particle size of SDC-supported anode on SOFC performance: effect of particle size of SDC support. Solid State Ionics. 262, 433–437 (2014)CrossRefGoogle Scholar
  43. 43.
    Skalar, T., Zupan, K., Marinšek, M., Novosel, B., Maček, J.: Microstructure evaluation of Ni-SDC synthesized with an innovative method and Ni-SDC/SDC bi-layer construction. J. Eur. Ceram. Soc. 34, 347–354 (2014)CrossRefGoogle Scholar
  44. 44.
    Marrero-Jerez, J., Chinarro, E., Moreno, B., Colomer, M.T., Jurado, J.R., et al.: TPR studies on NiO-CGO composites prepared by combustion synthesis. Ceram. Int. 40, 3469–3475 (2014)CrossRefGoogle Scholar
  45. 45.
    Ayawanna, J., Wattanasiriwech, D., Wattanasiriwech, S., Sato, K.: Electrochemical performance of Ni1-xCox-GDC cermet anodes for SOFCs. Energy Procedia. 34, 439–448 (2013)CrossRefGoogle Scholar
  46. 46.
    Liu, Q., Dong, X., Yang, C., Ma, S., Chen, F.: Self-rising synthesis of Ni-SDC cermets as anodes for solid oxide fuel cells. J. Power Sources. 195, 1543–1550 (2010)CrossRefGoogle Scholar
  47. 47.
    Akbari-Fakhrabadi, A., Avila, R.E., Carrasco, H.E., Ananthakumar, S., Mangalaraja, R.V.: Combustion synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite anode and its electrical characteristics of semi-cell configured SOFC assembly. J. Alloys Compd. 541, 1–5 (2012)CrossRefGoogle Scholar
  48. 48.
    Patil, B.B., Basu, S.: Synthesis and characterization of PdO-NiO-SDC nano-powder by glycine-nitrate combustion synthesis for anode of IT-SOFC. Energy Procedia. 54, 669–679 (2014)CrossRefGoogle Scholar
  49. 49.
    Wandekar, R.V., Ali Basu, M., Wani, B.N., Bharadwaj, S.R.: Physiochemical studies on NiO-GDC composites. Mater. Chem. Phys. 99, 289–294 (2006)CrossRefGoogle Scholar
  50. 50.
    Lanzini, A., Guerra, C., Leone, P., Santarelli, M., Smeacetto, F., et al.: Influence of the microstructure on the catalytic properties of SOFC anodes under dry reforming of methane. Mater. Lett. 164, 312–315 (2016)CrossRefGoogle Scholar
  51. 51.
    Mizusaki, J., Tsuchiya, S., Waragi, K., Tagawa, H., Arai, Y., et al.: Simple mathematical model for the electrical conductivity of highly porous ceramics. J. Am. Ceram. Soc. 79, 109–113 (1996)CrossRefGoogle Scholar
  52. 52.
    Chen, M., Kim, B.H., Xu, Q., Ahn, B.K., Kang, W.J., Huang, D.P.: Synthesis andelectrical properties of Ce0.8Sm0.2O1.9ceramics for IT-SOFC electrolytesby urea-combustion technique. Ceram. Int. 35, 1335–1343 (2009)CrossRefGoogle Scholar
  53. 53.
    Dholabhai, P.P., et al.: Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach. Model. Simul. Mater. Sci. Eng. 20, (2012)Google Scholar
  54. 54.
    Marinšek, M., Zupan, K., Maček, J.: Citrate-nitrate gel transformation behavior during the synthesis of combustion-derived NiO-Yttria-stabilized zirconia composite. J. Mater. Res. 18, 1551–1560 (2003)CrossRefGoogle Scholar
  55. 55.
    Kawashima, T., Hishinuma, M.: Analysis of electrical conduction path in Ni/YSZ participate composites using percolation theory. Mater. Trans. 37, 1397–1403 (1996)CrossRefGoogle Scholar
  56. 56.
    Okawa, Y., Hirata, Y.: Sinterability, microstructures and electrical properties of Ni/Sm-doped ceria cermet processed with nanometer-sized particles. J. Eur. Ceram. Soc. 25, 473–480 (2005)CrossRefGoogle Scholar
  57. 57.
    Xia, C., Liu, M.: Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs. Solid State Ionics. 152-153, 423–430 (2002)CrossRefGoogle Scholar
  58. 58.
    Acharya, S.A., Gaikwad, V.M., D’souza, S.W., Barman, S.R.: Gd/Sm dopant-modified oxidation state and defect generation in nano-ceria. Solid State Ionics. 260, 21–29 (2014)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Tina Skalar
    • 1
  • Klementina Zupan
    • 1
  • Marjan Marinšek
    • 1
    Email author
  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations