Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 103–114 | Cite as

Synthesis and application of high-permeable zeolite MER membrane for separation of carbon dioxide from methane

  • Seyed Mojtaba MirfendereskiEmail author


In this work, high-permeable zeolite merlinoite (MER) membranes were synthesized for separation of CO2/CH4. The effects of synthesis parameters (temperature, time, and coating number) on permeance and selectivity of synthesized membranes were investigated. The results showed that coating repetition of zeolite layer strongly increased membrane selectivity while decreased permeability for both gasses. Also, it was found that zeolite layers were thickened and larger crystals were formed at higher synthesis temperatures and times. In this research, zeolite MER membranes with reversal tradeoff effect, i.e., simultaneously increased permeability and selectivity, were prepared. The best membrane synthesized in this work showed a CO2/CH4 selectivity of 20.1 and a CO2 permeability of 2.5 × 10−8 mol/m2/s/pa. Due to the upper Robeson’s bound for the separation of CO2/CH4, the selectivities and permeabilities obtained in the current study were related to the points over the upper bounds, while the performance of commercial membranes used to separate CO2 from CH4 reported in the literatures is enclosed in the area below the upper bound. High-permeable zeolite MER membranes with reasonable CO2/CH4 selectivity were successfully synthesized in this work. It found as good choices for the separation of CO2 from CH4 in large-scale separation applications.


Zeolite MER Synthesis Membrane Separation High permeable 


Funding information

This work was supported by the research grants of Shahid Beheshti University G.C.


  1. 1.
    Mirfendereski, M., Sadrzadeh, M., Mohammadi, T.: Effect of synthesis parameters on single gas permeation through T-type zeolite membranes. Int J Greenh Gas Con. 2, 531–538 (2008)CrossRefGoogle Scholar
  2. 2.
    Rad, M.D., Fatemi, S., Mirfendereski, S.M.: Development of T type zeolite for separation of CO2 from CH4 in adsorption processes. Chem Eng Res Des. 90, 1687–1695 (2012)CrossRefGoogle Scholar
  3. 3.
    Koros, W.J., Mahajan, R.: Pushing the limits on possibilities for large scale gas separation: which strategies. J Membr Sci. 175, 181–396 (2000)CrossRefGoogle Scholar
  4. 4.
    Li, S., Alvarado, G., Noble, R.D., Falconer, J.L.: Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J Membr Sci. 251, 59–66 (2005)CrossRefGoogle Scholar
  5. 5.
    Vu, D.Q., Koros, W.J., Miller, S.J.: Higher pressure CO2/CH4 separation using carbon molecular sieve hollow membranes. Ind Eng Chem Res. 41, 367–380 (2002)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, Y., Kusakabe, K., Morooka, S.: Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube. Chem Eng Sci. 56, 4273–4281 (2001)CrossRefGoogle Scholar
  7. 7.
    Setiawan, H., Khairani, R., Rahman, M.A., Septawendar, R., Mukti, R.R., Dipojono, H.K., Purwasasmita, B.S.: Synthesis of zeolite and γ-alumina nanoparticles as ceramic membranes for desalination applications. J Aust Ceram Soc. 53, 531–538 (2017)CrossRefGoogle Scholar
  8. 8.
    Nagase, T., Kiyozumi, Y., Hasegawa, Y., Inoue, T., Ikeda, T., Mizukami, F.: Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett. 36, 594–595 (2007)CrossRefGoogle Scholar
  9. 9.
    Inoue, T., Nagase, T., Hasegawa, Y., Kiyozumi, Y., Sato, K., Nishioka, M., Hamakawa, S., Mizukami, F.: Stoichiometric ester condensation reaction processes by pervaporative water removal via acid-tolerant zeolite membranes. Ind Eng Chem Res. 46, 3743–3750 (2007)CrossRefGoogle Scholar
  10. 10.
    Hasegawa, Y., Nagase, T., Kiyozumi, Y., Mizukami, F.: Preparation, characterization, and dehydration performance of MER-type zeolite membranes. J. Sep. Puri. Tech. 73, 25–31 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, W., Guo, Q., Yang, C., Hou, J.: Preparation of novel functional MER zeolite membrane for potassium continuous extraction from seawater. J Porous Mat. (2017).
  12. 12.
    Mirfendereski, M., Mazaheri, T., Sadrzadeh, M., Mohammadi, T.: CO2 and CH4 permeation through T-type zeolite membranes: effect of synthesis parameters and feed pressure. J Sep Puri Tech. 61, 317–323 (2008)CrossRefGoogle Scholar
  13. 13.
    Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J., Jiang, Z.: Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity. Chem Mater. 17, 6790–6796 (2005)CrossRefGoogle Scholar
  14. 14.
    Mirfendereski, M., Mohammadi, T.: Investigation of hydrothermal synthesis parameters on characteristics of T type zeolite crystal structure. Powder Technol. 206, 345–352 (2011)CrossRefGoogle Scholar
  15. 15.
    Maghsoodloorad, H., Mirfendereski, M., Mohammadi, T., Pak, A.: Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clays Clay Miner. 59, 328–335 (2011)CrossRefGoogle Scholar
  16. 16.
    Mohammadi, T., Maghsoodloorad, H.: Synthesis and characterization of ceramic membranes (W-type zeolite membranes). Int J Appl Ceram Technol. 10, 365–375 (2013)CrossRefGoogle Scholar
  17. 17.
    Mirfendereski, S.M., Daneshpour, R., Mohammadi, T.: Synthesis and characterization of T-type zeolite membrane on a porous mullite tube. Desalination. 200, 77–79 (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Feng, P., Geng, P., Xu, C., Akhtar, F.: Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method. J Aust Ceram Soc. 53, 287–291 (2017)CrossRefGoogle Scholar
  19. 19.
    Wong, W.C., Au, L.T.Y., Ariso, C.T., Yeung, K.L.: Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci. 191, 143–163 (2001)CrossRefGoogle Scholar
  20. 20.
    Cheng, Y., Li, J.S., Wang, L.J., Sun, X.Y., Liu, X.D.: Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol. 51, 210–218 (2006)CrossRefGoogle Scholar
  21. 21.
    Li, S., Falconer, J.L., Noble, R.D.: SAPO-34 membranes for CO2/CH4 separation. J Membr Sci. 241, 121–135 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhang, F., Zheng, Y., Hu, L., Hu, N., Zhu, M., Zhou, R., Chen, X., Kita, H.: Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media. J Membr Sci. 456, 07–116 (2014)CrossRefGoogle Scholar
  23. 23.
    Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., Hagiwara, Y.: Novel CO2 absorbents using lithium-containing oxide. Int J Appl Ceram Technol. 2, 467–475 (2005)CrossRefGoogle Scholar
  24. 24.
    Tawalbeh, M., Tezel, F.H., Letaief, S., Detellier, C., Kruczek, B.: Separation of CO2 and N2 on zeolite silicalate-1 membrane synthesized on novel support. Sep Sci Technol. 47, 1606–1616 (2012)CrossRefGoogle Scholar
  25. 25.
    Tong, Z., Winston Ho, W.S.: Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol. 52, 156–167 (2017)CrossRefGoogle Scholar
  26. 26.
    Robeson, L.M.: The upper bound revisited. J Membr Sci. 320, 390–400 (2008)CrossRefGoogle Scholar
  27. 27.
    Bernardo, P., Drioli, E., Golemme, G.: Membrane gas separation: a review/state of the art. Ind Eng Chem Res. 48, 4638–4663 (2009)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical and Energy EngineeringShahid Beheshti University A.C.TehranIran

Personalised recommendations