Advertisement

Journal of the Australian Ceramic Society

, Volume 55, Issue 1, pp 19–24 | Cite as

Design and construction of a multifunction piezoelectric transformer

  • Adil EddiaiEmail author
  • Mounir Meddad
  • Mohamed Rguiti
  • Aïda Chérif
  • Christian Courtois
Research
  • 33 Downloads

Abstract

In recent years, piezoelectric materials have particularly found advantageous field of application in electrical energy’s conversion. Especially, the piezoelectric transformers are becoming more and more usable in electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise, and non-flammability. The purpose of this study was to investigate a transformer design that allows having multi-functionality with different efficiency and wider range of voltage gain at resonance frequency. The piezoelectric transformer construction utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. An electromechanical equivalent circuit model based on Mason’s equivalent circuit was developed so as to describe the characteristics of the piezoelectric transformer. Excellent matching was found between the simulation data and experimental results. Finally, the results of this study will allow to deterministically designing multifunction piezoelectric transformers with specified performance.

Keywords

Piezoelectric transformer Multifunction Radial mode Voltage gain Efficiency 

References

  1. 1.
    Hemsel, T., Priya, S.: Model based analysis of piezoelectric transformers. Ultrasonics. 44, 741–745 (2006)CrossRefGoogle Scholar
  2. 2.
    Sasaki, Y., Yamamoto, M., Ochi, A., Inoue, T., Takahashi, S.: Small multilayer piezoelectric transformers with high power density—characteristics of second and third-mode Rosen-type transformers. Jpn J Appl Phys. 38, 5598–5602 (1999)CrossRefGoogle Scholar
  3. 3.
    Horsley, E.L., Carazo, A.V., Nguyen-Quang, N., Foster, M.P., Stone, D.A.: Analysis of inductorless zero-voltage-switching piezoelectric transformer-based converters. IEEE Trans Power Electron. 27, 2471–2483 (2012)CrossRefGoogle Scholar
  4. 4.
    Boukazouha, F., Boubenider, F.: Piezoelectric transformer: comparison between a model and an analytical verification. Comput Struct. 86, 374–378 (2008)CrossRefGoogle Scholar
  5. 5.
    Jurisic, B., Uglesic, I., Xemard, A., Paladian, F.: High frequency transformer model derived from limited information about the transformer geometry. Electr Power Energy Syst. 94, 300–310 (2018)CrossRefGoogle Scholar
  6. 6.
    Jabbar, H., Jung, H.J., Chen, N., Cho, D.H., Sung, T.H.: Piezoelectric energy harvester impedance matching using a piezoelectric transformer. Sensors Actuators A. 264, 141–150 (2017)CrossRefGoogle Scholar
  7. 7.
    Yang, J.S., Zhang, X.: Extensional vibration of a nonuniform piezoceramic rod and high voltage generation. Int J Appl Electromagn Mech. 16, 29–42 (2002)CrossRefGoogle Scholar
  8. 8.
    Rosen C. A.: Electromechanical transducer. U.S. patent 2974296, Mar 7 (1961)Google Scholar
  9. 9.
    Kanayama, K., Maruko, N., Saigoh, H.: Development of the multilayer alternately poled piezoelectric transformers. Jpn J Appl Phys. 37, 2891–2895 (1998)CrossRefGoogle Scholar
  10. 10.
    Zaitsu, T., Inoue, T., Ohnishi, O., Sasaki, Y.: 2 MHz power converter with piezoelectric ceramic transformer. Inst Electron Inform Commun Eng Trans Electron. E77-C, 280–286 (1994)Google Scholar
  11. 11.
    Ohnishi, O., Sasaki, Y., Zaitsu, T., Kishie, H., Inoue, T.: Piezoelectric ceramic transformer for power supply operating in thickness extensional vibration mode. Inst Electron Inform Commun Eng Trans Electron. E77-A, 2098–2105 (1994)Google Scholar
  12. 12.
    Nadal, C., Pigache, F.: Multimodal electromechanical model of piezoelectric transformers by Hamilton’s principle. IEEE Trans Ultrason Ferroelectr Freq Control. 56, 2530–2543 (2009)CrossRefGoogle Scholar
  13. 13.
    Chérif, A., Richard, C., Guyomar, D., Belkhiat, S., Meddad, M., Eddiai, A., Hajjaji, A.: Improvement of piezoelectric transformer performances using SSHI and SSHI-max methods. Opt Quant Electron. 46, 117–131 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, M., Lam, K., Lin, D., Wang, S., Kwok, K.: A Rosen-type piezoelectric transformer employing lead-free K0.5Na0.5NbO3 ceramics. J Mater Sci. 43, 709–714 (2008)CrossRefGoogle Scholar
  15. 15.
    Du, J., Hu, J., Tseng, K.J., Kai, C.S., Siong, G.C.: Modeling and analysis of dual-output piezoelectric transformer operating at the thickness-shear vibration mode. IEEE Trans Ultrason Ferroelectr Freq Control. 53, 579–585 (2006)CrossRefGoogle Scholar
  16. 16.
    Jarrousse, J.M., Costa, F., Vasic D., Sarraute, E.: Low-power high-voltage DC-DC converter based on a PZT transformer. 10th European Conference on Power Electronics and Applications EPE 2003, Toulouse, FranceGoogle Scholar
  17. 17.
    Yang, J.S., Zhang, X.: Analysis of a thickness-shear piezoelectric transformer. Int J Appl Electromagn Mech. 21, 131–141 (2005)CrossRefGoogle Scholar
  18. 18.
    Lin, R.L., Baker, E., Lee, F.C.: Transoner characterization. First Quarterly Progress Report, ELC-99-007, August 28, (1999)Google Scholar
  19. 19.
    Huang, Y., Huang, W.: An improved equivalent circuit model of radial mode piezoelectric transformer. IEEE Trans Ultrason Ferroelectr Freq Control. 58, 1069–1076 (2011)CrossRefGoogle Scholar
  20. 20.
    Tachafine, A., Aoujgal, A., Rguiti, M., Graça, M.P.F., Costa, L.C., Outzourhit, A., Carru, J.-C.: Classical and relaxor ferroelectric behavior of titanate of barium and zirconium ceramics. Spectrosc Lett. 47, 404–410 (2014)CrossRefGoogle Scholar
  21. 21.
    Courtois, C., Devemy, S., Champagne, P., Lippert, M., Rguiti, M., Leriche, A., Chateigner, D., Guilmeau, E.: Comparison of two molten flux process for the elaboration of textured PZT thin plates. J Eur Ceram Soc. 27, 3779–3783 (2007)CrossRefGoogle Scholar
  22. 22.
    Cherif, A., Meddad, M., Belkhiat, S.: Radial piezoelectric transformer study. International journal of sciences and techniques of automatic control & computer engineering, special issue, CEM 566–579 (2008)Google Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Adil Eddiai
    • 1
    Email author
  • Mounir Meddad
    • 2
  • Mohamed Rguiti
    • 3
  • Aïda Chérif
    • 2
  • Christian Courtois
    • 3
  1. 1.Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M’sikUniversité Hassan II de CasablancaCasablancaMorocco
  2. 2.Université Bachir El Ibrahimi BBABordj Bou ArreridjAlgeria
  3. 3.EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés AssociésUniversité de ValenciennesValenciennesFrance

Personalised recommendations