Advertisement

Synthesis, characterization, and electrocatalytic properties of La0.9Sr0.1Cr1−xCoxO3 perovskite oxides

  • Sofiane MakhloufiEmail author
  • Elies Omari
  • Mahmoud Omari
Research
  • 35 Downloads

Abstract

Polycrystalline La0.9Sr0.1Cr1−xCoxO3 (0.0 ≤ x ≤ 0.4) solid solutions were synthesized by a sol-gel method using citric acid as chelating agent. Thermogravimetric and differential thermal analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction (XRD) techniques are used to explore precursor decomposition and to establish adequate calcination temperature for the preparation of the polycrystalline. The samples obtained after calcination at 750 °C were characterized by several techniques. X-ray diffraction analyses reveal that that B-site doping of Co may lead to the transformation of its crystal structure from an orthorhombic to a rhombohedral phase, when Co content x ≥ 0.2. Scanning electron microscopy (SEM) shows that all samples have almost spherical nanoparticles with high crystallization. The increase in the fraction of the doped-Co leads to high agglomeration of particles while the porosity increases. Electrochemical measurements indicate that the catalytic activity toward methanol oxidation in alkaline solution is strongly influenced by cobalt doping. La0.9Sr0.1Cr0.6Co0.4O3-modified electrodes responded extremely well to methanol by giving high anodic current for methanol oxidation (over 46 mA cm−2 at 0.650 V vs Hg/HgO).

Keywords

Perovskite electrode Sol-gel method Thermal analysis Crystal structure Electocatalytic properties 

References

  1. 1.
    Ren, X., Zelenay, P., Thomas, S., Davey, J., Gottesfeld, S.: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources. 86, 111–116 (2000)CrossRefGoogle Scholar
  2. 2.
    Jafarian, M., Mahjani, M.G., Heli, H., Gobal, F., Khajehsharifi, H., Hamedi, M.H.: A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim. Acta. 48, 3423–3429 (2003)CrossRefGoogle Scholar
  3. 3.
    Singh, R.N., Singh, A., Mishra, D., Anindita, C.P.: Oxidation of methanol on perovskite-type La2-xSrxNiO4 (0 ≤ x ≤ 1) film electrodes modified by dispersed nickel in 1 M KOH. J. Power Sources. 185, 776–783 (2008)CrossRefGoogle Scholar
  4. 4.
    Wasmus, S., Kuver, A.: Methanol oxidation and direct methanol fuel cells: a selective review1. J. Electroanal. Chem. 461, 14–31 (1999)CrossRefGoogle Scholar
  5. 5.
    Raghuveer, V., Ravindranathan, T.A., Xanthopoulos, N., Mathieu, H.J., Viswanathan, B.: Rare earth cuprates as electrocatalysts for methanol oxidation. Solid State Ionics. 140, 263–274 (2001)CrossRefGoogle Scholar
  6. 6.
    James, H., White, F., Anthony, F., Sammells, A.: Perovskite anode electrocatalysis for direct methanol fuel cells. J. Electrochem. Soc. 140, 2167–2177 (1993)CrossRefGoogle Scholar
  7. 7.
    Baker, R.T., Metcalfe, I.S.: Activity and deactivation of La0.8Ca0.2CrO3 in dry methane using temperature-programmed techniques. Appl. Catal. A. 126, 297–317 (1995)CrossRefGoogle Scholar
  8. 8.
    Hideki, T., Shin-ichiro, M., Mahiko, N., Hiroyasu, K.: Electrical properties of perovskite-type La(Cr1−xMnx)O3+δ. Phys. B Condens. Matter. 270, 325–331 (1999)CrossRefGoogle Scholar
  9. 9.
    Boroomand, F., Wessel, E., Bausinger, H., Hilppert, K.: Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs. Solid State Ionics. 129, 251–258 (2000)CrossRefGoogle Scholar
  10. 10.
    Saracco, G., Scibilia, G., Iannibello, A., Baldi, G.: Methane combustion on Mg-doped LaCrO3 perovskite catalysts. Appl. Catal. B Environ. 8, 229–244 (1996)CrossRefGoogle Scholar
  11. 11.
    Marcus, F.M.Z., Oliver, H., Menon, P.-G., Sven, J.G.: Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18 and Al2O3-coated monoliths. Catal. Today. 47, 73–82 (1999)CrossRefGoogle Scholar
  12. 12.
    Huang, K., Wan, J., Goodenough, J.B.: Oxide-ion conducting ceramics for solid oxide fuel cells. J. Mater. Sci. 36, 1093–1098 (2001)CrossRefGoogle Scholar
  13. 13.
    Ho-Chieh, Y., Kuan-Zong, F., Tz-Chiang, G., Wen-Li, C.: Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim. Acta. 50, 811–816 (2004)CrossRefGoogle Scholar
  14. 14.
    Joseph, S., Philippe, A.B., Pedro, M., Nicolas, X., Ruben, V., Hans, J.M., Jan, V.H., Ravindranathan, T.K.: Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes. J. Catal. 202, 229–244 (2001)CrossRefGoogle Scholar
  15. 15.
    Shan, W., Keke, H., Beining, Z., Jiaqi, Z., Feng, S.: Mild hydrothermal synthesis and physical property of perovskite Sr doped LaCrO3. Mater. Lett. 101, 86–89 (2013)CrossRefGoogle Scholar
  16. 16.
    Xifeng, D., Yingjia, L., Ling, G., Lucun, G.: Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J. Alloys Compd. 458, 346–350 (2008)CrossRefGoogle Scholar
  17. 17.
    Djani, F., Omari, M., Martinez-Arias, A.: Synthesis, characterization and catalytic properties of La(Ni,Fe)O3–NiO nanocomposites. J. Sol-Gel Sci. Technol. 78, 1–10 (2016)CrossRefGoogle Scholar
  18. 18.
    Makhloufi, S., Omari, M.: Structural, electrical and electrochemical characterizations of perovskite Ni-doped SrCoO3. J. Inorg. Organomet. Polym. 26, 32–40 (2016)CrossRefGoogle Scholar
  19. 19.
    Setz, L.F.G., Santacruz, I., Leon-Reina, L., Torre, A.G., Aranda, M.A.G., Mello-Castanho, S.R.H., Moreno, R., Colomer, M.T.: Strontium and cobalt doped-lanthanum chromite: characterisation of synthesised powders and sintered materials. Ceram. Int. 41, 1177–1187 (2015)CrossRefGoogle Scholar
  20. 20.
    Kaituo, W., Xuehang, W., Wenwein, W., Yongni, L., Sen, L.: Synthesis of perovskite LaCoO3 by thermal decomposition of oxalates: phase evolution and kinetics of the thermal transformation of the precursor. Ceram. Int. 40, 5997–6004 (2014)CrossRefGoogle Scholar
  21. 21.
    Fodil, H., Omari, M.: Synthesis, structural and physicochemical characterization of BaFe1-xAlxO3 oxides. Chem. Chem. Technol. 10, 387–394 (2016)CrossRefGoogle Scholar
  22. 22.
    Benakcha, R., Omari, M.: Synthesis and electrochemical properties of mesoporous La1-xMgxAlO3-δ nanopowders by sol-gel method. Inorg. Nano-Met. Chem. 47, 1103–1109 (2017)CrossRefGoogle Scholar
  23. 23.
    Taguchi, H., Matsuura, S., Nagao, M.: Synthesis of LaMnO3+δ by firing gels using citric acid. J. Solid State Chem. 129, 60–65 (1997)CrossRefGoogle Scholar
  24. 24.
    Busca, G., Lorenzelli, V.: Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 7, 89–126 (1982)CrossRefGoogle Scholar
  25. 25.
    Taguchi, H., Yamada, S., Nagao, M., Ichikawa, Y., Tabata, K.: Surface characterization of LaCoO3 synthesized using citric acid. Mater. Res. Bull. 37, 69–76 (2002)CrossRefGoogle Scholar
  26. 26.
    Yanping, W., Junwu, Z., Lili, Z., Xujie, Y., Lude, L., Xin, W.: Preparation and characterization of perovskite LaFeO3 nanocrystals. Mater. Lett. 60, 1767–1770 (2006)CrossRefGoogle Scholar
  27. 27.
    Lavat, A.E., Baran, E.J.: IR-spectroscopic characterization of A2BB’O6 perovskites. Vib. Spectrosc. 32(2), 167–174 (2003)CrossRefGoogle Scholar
  28. 28.
    Bibiana, P.B., Julio, A.G., Luis, E.C.: Synthesis and characterisation of La1−xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Appl. Catal. B Environ. 65(1–2), 21–30 (2006)Google Scholar
  29. 29.
    Rao, G.V., Rao, C.N.R., Ferraro, J.R.: Infrared and electronic spectra of rare earth perovskites: ortho-chromites,-manganites and -ferrites. Appl. Spectrosc. 24(4), 436–445 (1970)CrossRefGoogle Scholar
  30. 30.
    Hunyek, A., Sirisathitkul, C., Mahaphap, C., Boonyang, U., Tangwatanakul, W.: Sago starch: chelating agent in sol-gel synthesis of cobalt ferrite nanoparticles. J. Aust. Ceram. Soc. 53(1), 173–176 (2017)CrossRefGoogle Scholar
  31. 31.
    Carter, J.D., Anderson, H.U., Shumsky, M.G.: Structure and phase transformation of lanthanum chromate. J. Mater. Sci. 31, 551–557 (1996)CrossRefGoogle Scholar
  32. 32.
    Nithya, V.D., Immanuel, R.J., Senthilkumar, S.T., Sanjeeviraja, C., Perelshtein, I., Zitoun, D., Selvan, R.K.: Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Mater. Res. Bull. 47, 1861–1868 (2012)CrossRefGoogle Scholar
  33. 33.
    Ravindra, K.G., Chin, M.W.: Effects of anion and synthesis route on the structure of (La0.9Sr0.1) (Cr0.85 Fe0.05 Co0.05 Ni0.05)O3−δ perovskite and removal of impurity phases. Solid State Ionics. 178, 1617–1626 (2007)CrossRefGoogle Scholar
  34. 34.
    Madoui, N., Omari, M.: Synthesis and electrochemical properties of LaCr1-xCoxO3 (0 ≤ x ≤ 0.5) via co-precipitation method. J. Inorg. Organomet. Polym. 26, 1005–1013 (2016)CrossRefGoogle Scholar
  35. 35.
    Talley, K.R., Barron, S.C., Nguyen, N., Wong, N.W., Martin, J., Zhang, Y.L., Song, X.: Thermoelectric properties of the LaCoO3-LaCrO3 system using a high-throughput combinatorial approach. Solid State Sci. 64, 7–12 (2017)CrossRefGoogle Scholar
  36. 36.
    Wen-Ren, L., She-Huang, W., Hwo-Shuenn, S.: Preparation of spinel Li1.06Mn2O4−zClz cathode materials by the citrate gel method. J. Power Sources. 146, 232–236 (2005)CrossRefGoogle Scholar
  37. 37.
    Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A. 43, 3161–3164 (1991)CrossRefGoogle Scholar
  38. 38.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of Interatomie distances in halides and chaleogenides. Acta Crystallogr. 32, 751–767 (1976)CrossRefGoogle Scholar
  39. 39.
    Cullity, B.D.: Elements of X-ray Diffraction. Addison-Wesley, Boston (1978)Google Scholar
  40. 40.
    Majeed, K.M.A., Kumar, S., Ahamed, M.: Structural, electrical and optical properties of nanocrystalline silicon thin films deposited by pulsed laser ablation. Mater. Sci. Semicond Process. 30, 169–173 (2015)CrossRefGoogle Scholar
  41. 41.
    Itoh, T.: Particle and crystallite sizes of ZrO2 powder obtained by the calcination of hydrous zirconia. J Mater Sci Lett. 4, 431–433 (1985)CrossRefGoogle Scholar
  42. 42.
    Gubicza, J.: X-ray line profile analysis in materials science. IGI-Global, Hershey (2014)CrossRefGoogle Scholar
  43. 43.
    Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston (1974)Google Scholar
  44. 44.
    Fleischmann, M., Korinek, K., Pletcher, D.: The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. 31, 39–49 (1979)CrossRefGoogle Scholar
  45. 45.
    El-Shafei, A.A.: Study of nickel upd at a polycrystalline Pt electrode and its influence on HCOOH oxidation in acidic and nearly neutral media. J. Electroanal. Chem. 447, 81–89 (1998)CrossRefGoogle Scholar
  46. 46.
    El-Shafei, A.A.: Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 471, 89–95 (1999)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Chemistry and EnvironmentUniversity of BiskraBiskraAlgeria

Personalised recommendations