Processing of layered porous mullite ceramics

  • Ayşe Kalemtaş
  • Nigar Özey
  • Meryem Türkay Aytekin Aydin
Research
  • 90 Downloads

Abstract

In the current study, layered porous mullite ceramics with different pore sizes were produced via polymeric sponge method by using CC31 commercial-grade kaolin as starting raw material. Polyurethane sponges with three different pore sizes (10, 20, and 30 ppi) changing from coarse to fine pores were physically assembled and then prepared ceramic slurry was impregnated into this structure to achieve the designed layered porous structure. After drying the polymeric sponges impregnated with the slurry, binder burnout and sintering studies were carried out. Phase composition and microstructure evolution of the porous samples, sintered at 1300°-1600°C for 1 and 3 h dwell time at a 3°C/minute constant heating rate, were investigated. In situ mullite phase formation was achieved at all sintering conditions. It was determined that mullite grain morphology development strongly depends on the sintering temperature and time. Sintering at 1300 °C for 1 h resulted in the formation of equiaxed mullite grains. When the sintering temperature was increased to 1400 °C, first elongated fine mullite grains were achieved. Increasing dwell time at this temperature from 1 to 3 h resulted in more elongated mullite grain development. It was observed that aspect ratio of the mullite grains was significantly increased when the sintering temperature was increased to 1500 and 1600 °C. Scanning electron microscopy investigations demonstrated that the mullite needles do not reveal a significant preferred orientation and all porous mullite samples have uniform microstructure. It was determined that highly porous (60–70%) and light weight (0.7–1.1 g cm−3) layered mullite ceramics were fabricated.

Keywords

Porous ceramics Layered design Polymeric sponge method Mullite 

Notes

Acknowledgements

The authors would like to thank Zschimmer & Schwarz, Lahnstein, Germany for providing the Dolapix CE–64 deflocculant.

References

  1. 1.
    Aksay, I.A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic, and optical applications. J Am Ceram Soc. 74(10), 2343–2358 (1991)CrossRefGoogle Scholar
  2. 2.
    Chen, C.Y., Lan, G.S., Tuan, W.H.: Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceram Int. 26(7), 715–720 (2000)CrossRefGoogle Scholar
  3. 3.
    Carlesso, M., Giacomelli, R., Krause, T., Molotnikov, A., Koch, D., Kroll, S., Tushtev, K., Estrin, Y., Rezwan, K.: Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks. J Eur Ceram Soc. 33(13–14), 2549–2558 (2013)CrossRefGoogle Scholar
  4. 4.
    Kalemtas, A., Topates, G., Ozcoban, H., Mandal, H., Kara, F., Janssen, R.: Mechanical characterization of highly porous beta-Si3N4 ceramics fabricated via partial sintering & starch addition. J Eur Ceram Soc. 33(9), 1507–1515 (2013)CrossRefGoogle Scholar
  5. 5.
    Wan, T., Yao, D., Yin, J., Xia, Y., Zuo, K., Zeng, Y.: The microstructure and mechanical properties of porous silicon nitride ceramics prepared via novel aqueous gelcasting. Int J Appl Ceram Technol. 12(5), 932–938 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang, X., Li, B., Zhang, C., Wang, S., Liu, K., Zou, C.: Design and fabrication of porous Si 3 N 4-Si 2 N 2 O in situ composite ceramics with improved toughness. Mater Des. 110, 375–381 (2016)CrossRefGoogle Scholar
  7. 7.
    Wang, Q., Li, Y., Li, S., Xiang, R., Xu, N., OuYang, S.: Effects of critical particle size on properties and microstructure of porous purging materials. Mater Lett. 197, 48–51 (2017)CrossRefGoogle Scholar
  8. 8.
    Powell, S., Evans, J.: The structure of ceramic foams prepared from polyurethane-ceramic suspensions. Mater Manuf Process. 10(4), 757–771 (1995)CrossRefGoogle Scholar
  9. 9.
    Topates, G., Mammitzsch, L., Petasch, U., Adler, J., Kara, F., Mandal, H.: Microstructure–permeability relation of porous β-Si 3 N 4 ceramics. J Eur Ceram Soc. 33(9), 1545–1551 (2013)CrossRefGoogle Scholar
  10. 10.
    Moreira, E., Innocentini, M., Coury, J.: Permeability of ceramic foams to compressible and incompressible flow. J Eur Ceram Soc. 24(10), 3209–3218 (2004)CrossRefGoogle Scholar
  11. 11.
    Akpinar, S., Kusoglu, I.M., Ertugrul, O., Onel, K.: Silicon carbide particle reinforced mullite composite foams. Ceram Int. 38(8), 6163–6169 (2012)CrossRefGoogle Scholar
  12. 12.
    Liang, X., Li, Y.W., Liu, J., Sang, S.B., Chen, Y.Y., Li, B.W., Aneziris, C.G.: Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion. Ceram Int. 42(11), 13091–13097 (2016)CrossRefGoogle Scholar
  13. 13.
    Akpinar, S., Altun, I.A., Onel, K.: Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics. J Eur Ceram Soc. 30(13), 2727–2734 (2010)CrossRefGoogle Scholar
  14. 14.
    Hong, C., Du, J., Liang, J., Zhang, X., Han, J.: Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceram Int. 37(8), 3717–3722 (2011)CrossRefGoogle Scholar
  15. 15.
    Maca, K., Dobsak, P., Boccaccini, A.: Fabrication of graded porous ceramics using alumina–carbon powder mixtures. Ceram Int. 27(5), 577–584 (2001)CrossRefGoogle Scholar
  16. 16.
    Kinemuchi, Y., Watari, K., Uchimura, S.: Grading porous ceramics by centrifugal sintering. Acta Mater. 51(11), 3225–3231 (2003)CrossRefGoogle Scholar
  17. 17.
    Chen, F., Shen, Q., Zhang, L.: Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res. 105, 445–461 (2010)CrossRefGoogle Scholar
  18. 18.
    Shan, H., Wang, X., Shi, F., Yan, J., Yu, J., Ding, B.: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl Mater Interfaces. (2017)Google Scholar
  19. 19.
    Barg, S., Koch, D., Grathwohl, G.: Processing and properties of graded ceramic filters. J Am Ceram Soc. 92(12), 2854–2860 (2009)CrossRefGoogle Scholar
  20. 20.
    Darcovich, K., Cloutier, C.R.: Processing of functionally gradient ceramic membrane substrates for enhanced porosity. J Am Ceram Soc. 82(8), 2073–2079 (1999)CrossRefGoogle Scholar
  21. 21.
    Steffens, H.-D., Babiak, Z., Gramlich, M.: Some aspects of thick thermal barrier coating lifetime prolongation. J Therm Spray Technol. 8(4), 517–522 (1999)CrossRefGoogle Scholar
  22. 22.
    Pasco WD, Klug FJ (1980) Method for making porous, crushable core having a porous integral outer barrier layer having a density gradient therein, Google PatentsGoogle Scholar
  23. 23.
    Greskovich CD, Klug FJ, Pasco WD (1980) Process for making a ceramic article having a dense integral outer barrier layer and a high degree of porosity and crushability characteristics, Google PatentsGoogle Scholar
  24. 24.
    Greil, P., Lifka, T., Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J Eur Ceram Soc. 18(14), 1975–1983 (1998)CrossRefGoogle Scholar
  25. 25.
    Satyamurthy, K., Singh, J., Kamat, M., Hasselman, D.: Effect of spatially varying porosity on magnitude of thermal stress during steady-state heat flow. J Am Ceram Soc. 62(7–8), 431–432 (1979)CrossRefGoogle Scholar
  26. 26.
    Boccaccini, A., Janczak, J., Taplin, D., Köpf, M.: The multibarriers-system as a materials science approach for industrial waste disposal and recycling: application of gradient and multilayered microstructures. Environ Technol. 17(11), 1193–1203 (1996)CrossRefGoogle Scholar
  27. 27.
    Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials. 22(11), 1365–1370 (2001)CrossRefGoogle Scholar
  28. 28.
    Colombo, P., Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater Res Innov. 6(5–6), 260–272 (2002)CrossRefGoogle Scholar
  29. 29.
    Werner, J., Lathe, C., Greil, P., Frieß, W.: Pore-graded hydroxyapatite materials for implantation, pp. 509–510. British Ceramic Proceedings, UK (1999)Google Scholar
  30. 30.
    Sooksaen, P., Karawatthanaworrakul, S.: The properties of Southern Thailand clay-based porous ceramics fabricated from different pore size templates. Appl Clay Sci. 104, 295–302 (2015)CrossRefGoogle Scholar
  31. 31.
    Werner, J., Linner-Krčmar, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials. 23(21), 4285–4294 (2002)CrossRefGoogle Scholar
  32. 32.
    Aksel, C., Kalemtas, A.: Investigation of parameters affecting formation of mullite from kaolin. Key Eng Mater. 264-268, 117–120 (2004)CrossRefGoogle Scholar
  33. 33.
    Sonuparlak, B., Sarikaya, M., Aksay, I.A.: Spinel phase formation during the 980-degrees-C exothermic reaction in the kaolinite-to-mullite reaction-series. J Am Ceram Soc. 70(11), 837–842 (1987)CrossRefGoogle Scholar
  34. 34.
    Aksay, I.A., Sarikaya, M., Sonupariak, B.: Spinel phase formation during 980-degrees-C exothermic reaction in the kaolinite-to-mullite-reaction series—reply. J Am Ceram Soc. 72(8), 1571–1571 (1989)CrossRefGoogle Scholar
  35. 35.
    Chakraborty, A.K., Ghosh, D.K.: Comment on spinel phase formation during 980-degrees-C exothermic reaction in the kaolinite-to-mullite reaction-series. J Am Ceram Soc. 72(8), 1569–1570 (1989)CrossRefGoogle Scholar
  36. 36.
    Chakravorty, A.K., Ghosh, D.K.: Kaolinite mullite reaction-series—the development and significance of a binary aluminosilicate phase. J Am Ceram Soc. 74(6), 1401–1406 (1991)CrossRefGoogle Scholar
  37. 37.
    Papargyris, A.D., Cooke, R.D.: Structure and mechanical properties of kaolin based ceramics. Br Ceram Trans. 95(3), 107–120 (1996)Google Scholar
  38. 38.
    Lee, S., Kim, Y.J., Moon, H.S.: Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J Am Ceram Soc. 82(10), 2841–2848 (1999)CrossRefGoogle Scholar
  39. 39.
    Srikrishna, K., Thomas, G., Martinez, R., Corral, M.P., Deaza, S., Moya, J.S.: Kaolinite mullite reaction-series—a TEM study. J Mater Sci. 25(1b), 607–612 (1990)CrossRefGoogle Scholar
  40. 40.
    Slade, R.C.T., Davies, T.W.: Evolution of structural-changes during flash calcination of kaolinite—a Si-29 and Al-27 nuclear-magnetic-resonance spectroscopy study. J Mater Chem. 1(3), 361–364 (1991)CrossRefGoogle Scholar
  41. 41.
    Liu, K.C., Thomas, G., Caballero, A., Moya, J.S., Deaza, S.: Time-temperature transformation curves for kaolinite alpha-alumina. J Am Ceram Soc. 77(6), 1545–1552 (1994)CrossRefGoogle Scholar
  42. 42.
    Gualtieri, A., Bellotto, M., Artioli, G., Clark, S.M.: Kinetic-study of the kaolinite-mullite reaction sequence. 2. Mullite formation. Phys Chem Miner. 22(4), 215–222 (1995)CrossRefGoogle Scholar
  43. 43.
    Bellotto, M., Gualtieri, A., Artioli, G., Clark, S.M.: Kinetic-study of the kaolinite-mullite reaction sequence. 1. Kaolinite dehydroxylation. Phys Chem Miner. 22(4), 207–214 (1995)CrossRefGoogle Scholar
  44. 44.
    Koç, S., Toplan, N., Yildiz, K., Toplan, H.Ö.: Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 103(3), 791–796 (2011)CrossRefGoogle Scholar
  45. 45.
    Elmas, E., Yildiz, K., Toplan, N., Toplan, H.Ö.: The non-isothermal kinetics of mullite formation in mechanically activated kaolinite–alumina ceramic system. J Therm Anal Calorim. 108(3), 1201–1206 (2012)CrossRefGoogle Scholar
  46. 46.
    Yürüyen, S., Toplan, N., Yildiz, K., Toplan, H.Ö.: The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system. J Therm Anal Calorim. 125(2), 803–808 (2016)CrossRefGoogle Scholar
  47. 47.
    KUANG, J., Lin, L., Pengfei, L., Weiquan, Y., Jin, H., Tingsheng, Q.: Effect of Er 2 O 3 and Pr 6 O 11 on non-isothermal kinetics of mullite formation from kaolinite. J Rare Earths. 35(8), 831–836 (2017)CrossRefGoogle Scholar
  48. 48.
    Zhang, C., Zhang, Z., Tan, Y., Zhong, M.: The effect of citric acid on the kaolin activation and mullite formation. Ceram Int. 43(1, 1466–1471 (2017)CrossRefGoogle Scholar
  49. 49.
    Chakraborty, A., Ghosh, D.: Reexamination of the kaolinite-to-mullite reaction series. J Am Ceram Soc. 61(3–4), 170–173 (1978)CrossRefGoogle Scholar
  50. 50.
    Chen, Y.F., Wang, M.C., Hon, M.H.: Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 24(8), 2389–2397 (2004)CrossRefGoogle Scholar
  51. 51.
    Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 27(5), 517–522 (2001)CrossRefGoogle Scholar
  52. 52.
    Oyamada, R.: The mechanism of mullite formation in low-grade kaolin at low-temperatures. Denki Kagaku. 49(5), 286–292 (1981)Google Scholar
  53. 53.
    Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram Int. 42(10), 12185–12193 (2016)CrossRefGoogle Scholar
  54. 54.
    Fahad, M., Farid, U., Iqbal, Y.: Phase and microstructural evolution, and densification behaviour of kaolin powder compacts. Trans Indian Ceram Sci. 75(1), 47–52 (2016)CrossRefGoogle Scholar
  55. 55.
    Zibouche, F., Kerrioudj, H., Mohamed, T.A.: Structural characterization of mullite formed from heated kaolin of Tamazert deposit (Algeria). Asian J Chem. 24(3), 1118–1124 (2012)Google Scholar
  56. 56.
    Zhou, J.E., Zhang, X.Z., Zhang, J., Wang, Y.Q., Zhao, S.K., Cai, X.E.: Influence of clay materials on acicular mullite porous ceramic. Chin Ceram Commun II. 412, 344–347 (2012)Google Scholar
  57. 57.
    Wang, H.Y., Li, C.S., Peng, Z.J., Zhang, S.J.: Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 105(1), 157–160 (2011)CrossRefGoogle Scholar
  58. 58.
    Agathopoulos, S., Fernandes, H.R., Tulyaganov, D., Ferreira, J.M.F.: Preparation of mullite whiskers from kaolinite using CuSO4 as fluxing agent. Adv Mater Forum II. 455-456, 818–821 (2004)CrossRefGoogle Scholar
  59. 59.
    Kawai, S., Yoshida, M., Hashizume, G.: Preparation of mullite from kaolin by dry-grinding. Nippon Seramikkusu Kyokai Gakujutsu. 98(7), 669–674 (1990)CrossRefGoogle Scholar
  60. 60.
    Okada, K., Otsuka, N., Somiya, S.: Review of mullite synthesis routes in Japan. Am Ceram Soc Bull. 70(10), 1633–1640 (1991)Google Scholar
  61. 61.
    Perezmaqueda, L.A., Perezrodriguez, J.L., Scheiffele, G.W., Justo, A., Sanchezsoto, P.J.: Thermal-analysis of ground kaolinite and pyrophyllite. J Therm Anal Calorim. 39(8–9), 1055–1067 (1993)Google Scholar
  62. 62.
    Chakraborty, A.K.: Supplementary alkali extraction studies of 980-degrees-C-heated kaolinite by X-ray-diffraction analysis. J Mater Sci. 27(8), 2075–2082 (1992)CrossRefGoogle Scholar
  63. 63.
    Chakraborty, A.K.: Resolution of thermal peaks of kaolinite in thermomechanical analysis and differential thermal-analysis studies. J Am Ceram Soc. 75(7), 2013–2016 (1992)CrossRefGoogle Scholar
  64. 64.
    Pask, J.A., Tomsia, A.P.: Formation of mullite from sol-gel mixtures and kaolinite. J Am Ceram Soc. 74(10), 2367–2373 (1991)CrossRefGoogle Scholar
  65. 65.
    Chakraborty, A.K.: Phase Transformation of Kaolinite Clay. Springer, New Delhi (2014)Google Scholar
  66. 66.
    Chabinsky, I.J.: Applications of microwave energy past, present and future “brave new worlds”. MRS Online Proc Libr Arch. 124, 17 (1988) (13 pages)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Ayşe Kalemtaş
    • 1
  • Nigar Özey
    • 2
  • Meryem Türkay Aytekin Aydin
    • 3
  1. 1.Department of Metallurgical and Materials Engineering, Faculty of Natural Sciences, Architecture and EngineeringBursa Technical UniversityBursaTurkey
  2. 2.Orhan AutomotiveBursaTurkey
  3. 3.Department of Physics, Science FacultyAnadolu UniversityEskisehirTurkey

Personalised recommendations