Advertisement

Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue engineering

  • Mehmet O. Aydogdu
  • Bilcen Mutlu
  • Mustafa Kurt
  • Ahmet T. Inan
  • Serap E. Kuruca
  • Gökçe Erdemir
  • Yesim M. Sahin
  • Nazmi Ekren
  • Faik N. Oktar
  • Oguzhan GunduzEmail author
Research
  • 28 Downloads

Abstract

3D bioprinting provides an innovative strategy to fabricate a new composite scaffold material consisted in a porous and rough structure with using polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP), and collagen as a building block for tissue engineering. We investigated the optimization of the scaffold properties based on the β-TCP concentration using 3D bioprinting method. Computer-aided drawing was applied in order to digitally design the scaffolds while instead of solid filaments, materials were prepared as a blend solution and controlled evaporation of the solvent during the bioprinting was enabled the proper solidification of the scaffolds, and they were successfully produced with well-defined porous structure. This work demonstrated the feasibility of complex PCL/β-TCP/collagen scaffolds as an alternative in the 3D bioprinting engineering to the fabrication of porous scaffolds for tissue engineering.

Keywords

Biomaterials Biomedical engineering Additive manufacturing Hard tissue scaffolds 

Notes

Funding information

This study has been founded by BAPKO, Marmara University, grant no. FEN-C-YLP-090217-0066.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wu, S., Liu, X., Yeung, K.W.K., Liu, C.S., Yang, X.J.: Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. 80, 1–36 (2014)CrossRefGoogle Scholar
  2. 2.
    Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27), 5474–5491 (2005)CrossRefGoogle Scholar
  3. 3.
    Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014)CrossRefGoogle Scholar
  4. 4.
    Groll, J., Boland, T., Blunk, T., Burdick, J.A., Cho, D.W., Dalton, P.D., Derby, B., Forgacs, G., Li, Q., Mironov, V.A.: Biofabrication: reappraising the definition of an evolving field. Biofabrication. 8(1), 013001 (2016)CrossRefGoogle Scholar
  5. 5.
    Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40(4), 268–280 (2008)CrossRefGoogle Scholar
  6. 6.
    Chong, E., Phan, T., Lim, I., Zhang, Y., Bay, B., Ramakrishna, S., Lim, C.: Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 3(3), 321–330 (2007)CrossRefGoogle Scholar
  7. 7.
    Gautam, S., Dinda, A.K., Mishra, N.C.: Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng. C. 33(3), 1228–1235 (2013)CrossRefGoogle Scholar
  8. 8.
    Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)CrossRefGoogle Scholar
  9. 9.
    Holmes, R.E., Bucholz, R.W., Mooney, V.: Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J. Bone Joint Surg. Am. 68(6), 904–911 (1986)CrossRefGoogle Scholar
  10. 10.
    Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)CrossRefGoogle Scholar
  11. 11.
    Lee, V.K., Dias, A., Ozturk, M.S., Chen, K., Tricomi, B., Corr, D.T., Intes, X., Dai, G.: 3D Bioprinting and 3D Imaging for Stem Cell Engineering, pp. 33–66. Springer International Publishing (2015)Google Scholar
  12. 12.
    Jang, D., Kim, D., Moon, J.: Influence of fluid physical properties on ink-jet printability. Langmuir. 25(5), 2629–2635 (2009)CrossRefGoogle Scholar
  13. 13.
    Patlolla, A., Collins, G., Arinzeh, T.L.: Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater. 6(1), 90–101 (2010)CrossRefGoogle Scholar
  14. 14.
    Rosales-Leal, J.I., Rodríguez-Valverde, M.A., Mazzaglia, G., Ramón-Torregrosa, P.J., Rodriguez, L.D., Martinez, O.G., Vallecillo-Capilla, M., Ruiz, C., Cabrerizo-Vílchez, M.A.: Effects of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf. A Physicochem. Eng. Asp. 365(1–3), 222–229 (2010)CrossRefGoogle Scholar
  15. 15.
    Kim, J.Y., Yoon, J.J., Park, E.K., Kim, D.S., Kim, S.Y., Cho, D.W.: Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Biofabrication. 1(1), 015002 (2009)CrossRefGoogle Scholar
  16. 16.
    Davila, J.L., Freitas, M.S., Neto, P.I., Silveira, Z.C., Silva, J.V.L., d’Ávila, M.A.: Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. 133, 43031 (2016)CrossRefGoogle Scholar
  17. 17.
    Khan, S.N., Warkhedkar, R.M., Shyam, A.K.: Human bone strength evaluation through different mechanical tests. IJCET. 2, 2347–5161 (2014)Google Scholar
  18. 18.
    Havaldar, R., Pilli, S.C., Putti, B.B.: Insights into the effects of tensile and compressive loadings on human femur bone. Adv. Biomed. Res. 3, 101 (2014)CrossRefGoogle Scholar
  19. 19.
    Aydogdu, M.O., Chou, J., Altun, E., Ekren, N., Cakmak, S., Eroglu, M., Osman, A.A., Kutlu, O., Oner, E.T., Avsar, G., Oktar, F.N., Yilmaz, I., Gunduz, O.: Int. J. Polym. Mater. Polym. Biomater. (2018).  https://doi.org/10.1080/00914037.2018.1443930
  20. 20.
    Tavares, D.S., Castro, L.O., Soares, G.D.A., Alves, G.G., Granjeiro, J.M.: Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral Sci. 21(1), 37–42 (2013)CrossRefGoogle Scholar
  21. 21.
    Kim, B.S., Choi, J.S., Kim, J.D., Yoon, H.I., Choi, Y.C., Cho, Y.W.: Human collagen isolated from adipose tissue. Biotechnol. Prog. 28(4), 973–980 (2012)CrossRefGoogle Scholar
  22. 22.
    Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., ; Tan, K.C Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. A, 55 (2), 203–216. (2001)CrossRefGoogle Scholar
  23. 23.
    Melchels, F.P.W., Tonnarelli, B., Olivares, A.L., Martin, I., Lacroix, D., Feijen, J., Wendt, D.J., Grijpm, D.W.: The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials. 32, 2878–2884 (2011)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  • Mehmet O. Aydogdu
    • 1
    • 2
  • Bilcen Mutlu
    • 3
  • Mustafa Kurt
    • 3
  • Ahmet T. Inan
    • 3
  • Serap E. Kuruca
    • 4
  • Gökçe Erdemir
    • 5
  • Yesim M. Sahin
    • 6
  • Nazmi Ekren
    • 1
    • 7
  • Faik N. Oktar
    • 1
    • 8
  • Oguzhan Gunduz
    • 1
    • 9
  1. 1.Center for Nanotechnology & Biomaterials ResearchMarmara UniversityIstanbulTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Master of Science, Institute of Pure and Applied SciencesMarmara UniversityIstanbulTurkey
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey
  4. 4.Department of PhysiologyIstanbul UniversityIstanbulTurkey
  5. 5.Department of Molecular Medicine, The Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey
  6. 6.Department of Biomedical EngineeringIstanbul Arel UniversityIstanbulTurkey
  7. 7.Department of Electrical and Electronics Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  8. 8.Department of Bioengineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey
  9. 9.Department of Metallurgical and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey

Personalised recommendations