Two-step synthesis of reduced graphene oxide with columnar-shaped ZnO composites and their photocatalytic performance with natural dye

  • Rishikesh Yadav
  • Vijay KumarEmail author
  • Vipul Saxena
  • Prabhakar Singh
  • Vinay Kumar Singh


Composites of ZnO with reduced graphene oxide were prepared in two-step synthesis process with constant temperature in variation with pH values. The synthesized composites were characterized and the results suggest that ZnO structure in the composites has a columnar morphology with an average diameter ranging 0.8–1.57 μm. The obtained properties of the composites with the present method confirmed that the material morphology influences the absorption and photocatalytic activity of natural dye under sunlight irradiation. The result shows that the maximum degradation efficiency is 64.40% achieved in 120 min.


Zinc oxide Columnar morphology Reduced grapheme oxide Photocatalytic activity Natural dye 



The authors gratefully acknowledge the financial support of IIT (B.H.U) MHRD, New Delhi India.


  1. 1.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended grapheme. J. Solid State Commun. 351, 146 (2008)Google Scholar
  2. 2.
    Li, X.S., Zhu, Y.W., Cai, W.W., Borysiak, M., Han, B.Y., Chen, D., Piner, R.D., Luigi, D.P.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009)CrossRefGoogle Scholar
  3. 3.
    Lee, C., Wei, X.D., Kysar, J.W.: Measurement of the electronic properties and intrinsic strength of monolayer graphene. J. Hone Sci. 385, 321 (2008)Google Scholar
  4. 4.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y., Liu, L., Cui, T., Tong, G., Wenhua, W.: Enhanced photocatalytic properties of ZnO/reduced grapheme oxide sheets (rGO) composites with controllable morphology and composition. J. Appl. Surf. Sci. 58, 412 (2017)Google Scholar
  6. 6.
    Pruna, A., Shao, Q., Kamruzzaman, M., Zapien, J.A., Ruotolo, A.: Enhanced electrochemical performance of ZnO nanorod core/polypyrrole shell arrays by graphene oxide. Electrochim. Acta. 187, 157–524 (2016)CrossRefGoogle Scholar
  7. 7.
    Lu, H., Lipatov, A., Ryu, S., Kim, D.J., Lee, H., Zhuravlev, M.Y., Eom, C.B., Tsymbal, E.Y., Sinitskii, A., Gruverman, A.: Ferroelectric tunnel junction with graphene electrodes. Nat. Commun. 5518, 5 (2014)Google Scholar
  8. 8.
    Ni, G., Zheng, Y., Bae, S., Tan, C.Y., Kahya, O., Wu, J., Hong, B.H., Yao, K., Ozyilmaz, B.: Graphene-ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano. 3935, 6 (2012)Google Scholar
  9. 9.
    Jie, W., Hao, J.: Graphene-based hybride structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale. 6, 6346 (2014)CrossRefGoogle Scholar
  10. 10.
    Kafy, A., Sadasivuni, K.K., Kim, H.C., Akther, A., Kim, J.: Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys. Chem. Chem. Phys. 5923, 17 (2015)Google Scholar
  11. 11.
    Jammula, R.K., Pittala, S., Srinath, S., Srikanth, V.V.S.S.: Strong interfacial polarization in ZnO decorated-graphene oxide synthesized by molecular level mixing. Phys. Chem. Chem. Phys. 17, 17237–17245 (2015)CrossRefGoogle Scholar
  12. 12.
    Wen, B., Cao, M., Lu, M., Cao, W., Shi, H., Liu, J., Wang, X., Jin, H., Fang, X., Wang, W., Yuan, J.: Reduced graphene oxides: light–weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 3484, 26 (2014)Google Scholar
  13. 13.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature. 10, 197–200 (2005)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of quantum Hall effect and Berry’s phase in graphene. Nat. 438, 201–204 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhu, B.Y., Murali, S., Weiwei, C., et al.: Graphene, and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  16. 16.
    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C. 113, 15768–15771 (2009)CrossRefGoogle Scholar
  17. 17.
    Jilani, S.M., Gamot, T.D., Banerji, P.: Thin-film transistors with a graphene oxide nanocomposite channel. ACS Lang. 16485-16724, 28 (2012)Google Scholar
  18. 18.
    Yang, Y., Lulu, R., Zhang, C., Huang, S., Liu, T.: Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Appl. Mater. Interfaces. 3, 2779–2785 (2011)CrossRefGoogle Scholar
  19. 19.
    Wan, Z., Nelson, K., Hillborg, H., Zhao, S., Schadler, L.S.: Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv. Mater. 24, 3134–3137 (2012)CrossRefGoogle Scholar
  20. 20.
    Li, B., Liu, T., Wang, Y., Wang, Z.: ZnO/graphene oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 377, 114–121 (2012)CrossRefGoogle Scholar
  21. 21.
    Kamat, P.V.: Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010)CrossRefGoogle Scholar
  22. 22.
    Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room temperature ultraviolet nanowire nanolasers. Science. 1897–1899, 292 (2001)Google Scholar
  23. 23.
    Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J.Phys. Condens Matter. 16, R829–R858 (2004)CrossRefGoogle Scholar
  24. 24.
    Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRefGoogle Scholar
  25. 25.
    Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B. 80, 383–387 (2001)CrossRefGoogle Scholar
  26. 26.
    Naseem, S., Iqbal, M., Hussain, K.: Optoelectrical and structural properties of evaporated indium oxide thin films. Sol. Energy Mater. Sol. Cells. 31, 155–162 (1993)CrossRefGoogle Scholar
  27. 27.
    Kanasuqi, K., Ohgoe, Y., Hirakuri, K.K., Fukui, Y.: Cytocompatibility of modified α-C: H film deposited on complicated polymeric medical apparatus. J. Appl. Phys. 105, 113 (2009)Google Scholar
  28. 28.
    Kathirvel, P., Chandrasekaran, J., Manoharan, D., Kumar, S.: Preparation and characterization of alpha alumina nanoparticles by in-flight oxidation of flame synthesis. J. Alloys Compd. 590, 341–345 (2014)CrossRefGoogle Scholar
  29. 29.
    Danks, A.E., Hall, S.R., Schnepp, Z.: The evolution of 'sol-gel' chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016)CrossRefGoogle Scholar
  30. 30.
    Ding, J., Zhu, S., Zhu, T., Sun, W., Li, Q., Wei, G., Su, Z.: Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 5, 22935–22942 (2015)CrossRefGoogle Scholar
  31. 31.
    Darwish, M., Mohammadi, A., Assi, N.: Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74, 387–396 (2016)CrossRefGoogle Scholar
  32. 32.
    Bhushan, B., Murty, B.S., Mondal, K.: A two-step method for synthesis of micron sized nanoporous silver powder and ZnO nanoparticles. Adv. Powder Technol. 28, 2532–2541 (2017)CrossRefGoogle Scholar
  33. 33.
    Parra, M.R., Haque, F.Z.: Aqueous chemical route synthesis and the effect of calcinations temperature on the structural and optical properties of ZnO nanoparticles. J Mater. Res Technol. 3, 363–369 (2014)CrossRefGoogle Scholar
  34. 34.
    Yang, Q., Hu, W.: A novel mercury-media route to synthesize ZnO hollow microspheres. Ceram. Int. 36, 989–993 (2010)CrossRefGoogle Scholar
  35. 35.
    Hummers, W.S., Offerman, R.E.: Preparation of graphene oxide. Chem. Soc. 1339, 80 (1958)Google Scholar
  36. 36.
    Shan, F.K., Kim, B.I., Liu, G.X., Liu, Z.F., Sohn, J.Y., Lee, W.J., Shin, B.C., Yu, Y.S.: Blue shift of near band edge emission in Mg-doped ZnO thin films and aging. J. Appl. Phys. 95, 4772–4776 (2004)CrossRefGoogle Scholar
  37. 37.
    Kathirvel, P., Chandrasekaran, J., Manoharan, D., Kumar, S.: Deposition and characterization of alpha alumina thin films prepared by chemical bath deposition. J. Light Electron. Opt. 2177–2179 (2015)Google Scholar
  38. 38.
    Cuong, T.V., Pham, V.H., Tran, Q.T., Hahn, S.H., Chung, J.S., Shin, E.W., et al.: Photoluminescence and Raman study of graphene thin films prepared by reduction of graphene oxide. Mater. Lett. 64, 399–401 (2010)CrossRefGoogle Scholar
  39. 39.
    Eduardo, H.L.F., Richard, G.B., Mack, J.J., Viculis, L.M., Kwon, C.-W., Bendikov, M., Kaner, R.B., Dunn, B.S.: Microwave exfoliation of graphite intercalation compound. Carbon. 45, 1364–1367 (2007)CrossRefGoogle Scholar
  40. 40.
    Cong, H.P., He, J.J., Lu, Y., Yu, S.H.: Water-soluble magnetic-functional reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small. 6, 169–173 (2010)CrossRefGoogle Scholar
  41. 41.
    Chithra, M.J., Sathya, M., Pushpanathan, K.: Effect of Ph on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (Engl. Lett.). 28, 394–404 (2015)CrossRefGoogle Scholar
  42. 42.
    Mote, V., Purushotham, Y., Dole, B.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)CrossRefGoogle Scholar
  43. 43.
    Pelleg, J., Elish, E., Mogilyanski, D.: Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method. Metall. Mater. Trans. A. 36, 3187 (2005)CrossRefGoogle Scholar
  44. 44.
    Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Theor Appl Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
  45. 45.
    Fu, D., Han, G., Chang, Y., Dong, J.: The synthesis and properties of ZnO–graphene nanohybrid for photodegradation of organic pollutant in water. Mater. Chem. Phys. 132, 673–681 (2012)CrossRefGoogle Scholar
  46. 46.
    Sharma, D., Sharma, S., Kaith, B.S., Rajput, J., Kaur, M.: Synthesis of ZnO nanoparticles using surfactant-free in-air and microwave method. Appl. Surf. Sci. 257, 9661–9672 (2011)CrossRefGoogle Scholar
  47. 47.
    Xiaofei, M., Zachariah, M.R., Zangmeister, C.D.: Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012)CrossRefGoogle Scholar
  48. 48.
    Lepot, N., Van Bael, M.K., et al.: Synthesis of ZnO nanorods from aqueous solution. Mater. Lett. 61, 2624–2627 (2007)CrossRefGoogle Scholar
  49. 49.
    Liu, X., Pan, L., Zhao, Q., et al.: UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (IV). J. Chem. Eng. 183, 238–243 (2012)CrossRefGoogle Scholar
  50. 50.
    Xu, T.G., Zhang, L.W., Cheng, H.Y., Zhu, Y.F.: Significantly enhanced the photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B Environ. 101, 382–387 (2011)CrossRefGoogle Scholar
  51. 51.
    Park, S., Jinho, A., Jung, I., et al.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)CrossRefGoogle Scholar
  52. 52.
    Ferrari, A.C., Meyer, J.C., et al.: Raman spectrum of graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2006)CrossRefGoogle Scholar
  53. 53.
    Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)CrossRefGoogle Scholar
  54. 54.
    Schonfelder, R., Rummeli, M.H., Gruner, W., et al.: Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. J. Nanotechnol. 18, 375601–375608 (2007)CrossRefGoogle Scholar
  55. 55.
    Stankovich, S., Dikin, D.A., Piner, R.D., et al.: Synthesis of graphene -based nanosheets via chemical reduction of exfoliated graphite oxide. J Carbon. 45, 1558–1565 (2007)CrossRefGoogle Scholar
  56. 56.
    Zhang, H., Lv, X.J., Li, Y.M., Wang, Y., Li, J.H.: P25-graphene composite as a high-performancephotocatalyst. ACS Nano. 4, 380–386 (2010)CrossRefGoogle Scholar
  57. 57.
    Lv, T., Pan, L.K., Liu, X.J., Lu, T., Zhu, G., Sun, Z.: Enhance photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509, 10086–10091 (2011)CrossRefGoogle Scholar
  58. 58.
    Gong, Y., Zou, C., Yao, Y., et al.: A facile approach to synthesize rose-like ZnO/reduced graphene oxide composite: fluorescence and photocatalytic properties. J. Mater. Sci. 49, 5658–5666 (2014)CrossRefGoogle Scholar
  59. 59.
    Khokhra, R., Singh, R.K., Kumar, R.: Effect of synthesis medium on aggregation tendencies of ZnO nanosheets and their superior photocatalytic performance. Mater. Sci. 50, 819–832 (2015)CrossRefGoogle Scholar
  60. 60.
    Tang, Y.B., Lee, C.S., et al.: Incorporation of graphene in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano. 4, 3482–3488 (2010)CrossRefGoogle Scholar
  61. 61.
    Zhang, J., Xiong, Z., Zhao, X.S.: Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21, 3634–3640 (2011)CrossRefGoogle Scholar
  62. 62.
    Zhou, X., Shi, T., Zhou, H.: Hydrothermal preparation of ZnO-reduced grapheme oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci. 258, 6204–6211 (2012)CrossRefGoogle Scholar
  63. 63.
    Tien, H.N., Luan, V.H., Hoal, T., Khoa, N.T., Hahn, S.H., et al.: One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible photocatalyst. J. Chem. Eng. 229, 126 (2013)CrossRefGoogle Scholar
  64. 64.
    Zhang, C., Zhang, J., Su, Y., et al.: ZnO nanowire/reduced graphene oxide nanocomposites significantly enhance photocatalytic degradation of Rhodamine 6G. J. Phy. E. 56, 251–255 (2014)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringIIT (BHU) VaranasiVaranasiIndia
  2. 2.Department of PhysicsIIT (BHU) VaranasiVaranasiIndia

Personalised recommendations