Alpha-radiation effects of Gd2Zr2O7 bearing simulated multi-nuclides

  • Min Zhou
  • Chenxi Hou
  • Yi Xie
  • Lan Wang
  • Xiaoyan ShuEmail author
  • Dadong Shao
  • Xirui LuEmail author


In order to explore the radiation effects of Gd2Zr2O7 bearing multi-nuclides, the compounds with simulated typical waste after trialkyl phosphine oxides (TRPO) process were taken for this research. The pyrochlore-type compound (containing Zr4+, Mo6+, Ru4+, and Pd2+) were irradiated using 0.5 MeV He2+ ions at room temperature, with fluences ranging from 1 × 1015 ions/cm2 up to 1 × 1017 ions/cm2. The results discovered that the compound transformed from pyrochlore to fluorite phase after irradiation. Besides, a slight structural disordering and lattice swelling were observed. Furthermore, the microtopography of the irradiated ceramics was kept, and no aggregation of elements appeared on the He2+ ion irradiated surface.


Pyrochlore ceramic Multi-nuclides TRPO waste Irradiation Structure distortion 



The authors express deep appreciation to Jing Chen, Jianchen Wang, and Mingfen Wen in Tsinghua University for providing the formulation of the typical TRPO waste, and thanks a lot to Jinyu Li for his experimental supporting in 320 kV multi-discipline research platform for highly charged ions at the Chinese Academy of Sciences.

Funding information

The authors received financial support from the National Natural Science Foundation of China (No. 2150715 and No. 41574100), Foundation of Fundamental Science on Nuclear Wastes, and Environmental Safety Laboratory, Southwest University of Science and Technology (No. 15yyhk10).


  1. 1.
    Subramanian, M.A., Aravamudan, G., Rao, G.V.S.: Oxide pyrochlores-a review. Prog Solid State Ch. 15, 55–143 (1983)CrossRefGoogle Scholar
  2. 2.
    Mandal, B.P., Tyagi, A.K.: Pyrochlores: potential multifunctional materials. Barc Newsletter. 6, (2010)Google Scholar
  3. 3.
    Ewing, R.C., Weber, W.J., Lian, J.: Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys. 95, 5949–5971 (2004)CrossRefGoogle Scholar
  4. 4.
    Monje, M.L., Mizumatsu, S., Fike, J.R., et al.: Irradiation induces neural precursor-cell dysfunction. Nat Med. 8, 955 (2012)CrossRefGoogle Scholar
  5. 5.
    Solomah: Effects of gamma irradiation on the leaching behavior of a synthetic mineral waste form (SYNROC-B). Trans Am Nucl Soc (United States). 40 (1982)Google Scholar
  6. 6.
    Ewing, R.C., Weber Jr., W.J., F. W., C.: Radiation effects in nuclear waste forms for high-level radioactive waste. Prog Nucl Energ. 29, 63–127 (1995)CrossRefGoogle Scholar
  7. 7.
    Lian, J., Weber, W.J., Jiang, W., et al.: Radiation-induced effects in pyrochlores and nanoscale materials engineering. Nucl Instrum Meth. 250(1–2), 128–136 (2006)CrossRefGoogle Scholar
  8. 8.
    Gregg, D.J., Zhang, Y., Zhang, Z., et al.: Crystal chemistry and structures of uranium-doped gadolinium zirconates. J Nucl Mater. 438(1–3), 144–153 (2013)CrossRefGoogle Scholar
  9. 9.
    Lu, X., Ding, Y., Shu, X., et al.: Preparation and heavy-ion irradiation effects of Gd2CexZr2−xO7 ceramics. RSC Adv. 5, 64247–64253 (2015)CrossRefGoogle Scholar
  10. 10.
    Lian, J., Yudintsev, S.V., VStefanovsky, S., et al.: Ion beam irradiation of U-, Th- and Ce-doped pyrochlores. J Alloy Compd. 444(19), 429–433 (2007)CrossRefGoogle Scholar
  11. 11.
    Chen, S., Shu, X., Wang, L., et al.: Effects of alpha irradiation on Nd2Zr2O7, matrix for nuclear waste forms. J Aust Ceram Soc. 54, 33–38 (2018)CrossRefGoogle Scholar
  12. 12.
    Aughterson, R.D., Lumpkin, G.R., Thorogood, G.J., et al.: Crystal chemistry of the orthorhombic Ln2TiO5 compounds with Ln =La, Pr, Nd, Sm, Gd, Tb and Dy. J Solid State Chem. 227, 60–67 (2015)CrossRefGoogle Scholar
  13. 13.
    Chartier, A., Crocombette, C., Meis, J.P.C., et al.: Radiation effects in lanthanum pyrozirconate. Nucl Instrum Meth. 250(1–2), 17–23 (2006)CrossRefGoogle Scholar
  14. 14.
    Yang, D.Y., Xu, C.P., Fu, E.G., et al.: Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2−xErx)O7−x/2, (x = 0-0.667). Nucl Instrum Meth. 356-357, 69–74 (2015)CrossRefGoogle Scholar
  15. 15.
    Lumpkin, G.R.: Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J Nucl Mater. 289(1), 136–166 (2001)CrossRefGoogle Scholar
  16. 16.
    Shu, X., Fan, L., Hou, C., et al.: Microstructure and performance studies of (Mo, Ru, Pd, Zr) tetra-doped gadolinium zirconate pyrochlore. Adv Appl Ceram. 116(5), 272–277 (2017)CrossRefGoogle Scholar
  17. 17.
    Fan, L., Shu, X., Ding, Y., et al.: Fabrication and phase transition of Gd2Zr2O7 ceramics immobilized various simulated radionuclides. J Nucl Mater. 456, 467–470 (2015)CrossRefGoogle Scholar
  18. 18.
    Fan, L., Shu, X., Lu, X., et al.: Phase structure and aqueous stability of TRPO waste incorporation into Gd2Zr2O7 pyrochlore. Ceram Int. 41, 11741–11747 (2015)CrossRefGoogle Scholar
  19. 19.
    Ziegler, J. F., Biersack, J. P.: The stopping and range of ions in matter [M]//Treatise on heavy-ion Science. Springer. US. 93–129 (1985)Google Scholar
  20. 20.
    Rafaja, D., Valvoda, V., Perry, A.J., et al.: Depth profile of residual stress in metal-ion implanted tin coatings. Surf Coat Tech. 92(1–2), 135–141 (1997)CrossRefGoogle Scholar
  21. 21.
    Stoller, R.E., Toloczko, M.B., Was, G.S., et al.: On the use of SRIM for computing radiation damage exposure. Nucl Instrum Meth B. 310, 75–80 (2013)CrossRefGoogle Scholar
  22. 22.
    Egeland, G.W., Valdez, J.A., Maloy, S.A., et al.: Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption. J Nucl Mater. 435(1), 77–87 (2013)CrossRefGoogle Scholar
  23. 23.
    Yang, D., Xia, Y., Wen, J., et al.: Role of ion species in radiation effects of Lu2Ti2O7 pyrochlore. J Alloy Compd. 693, 565–572 (2017)CrossRefGoogle Scholar
  24. 24.
    Lang, M., Toulemonde, M., Zhang, J., et al.: Swift heavy ion track formation in Gd2Zr2−xTixO7 pyrochlore: effect of electronic energy loss. Nucl Instrum Meth B. 336, 102–115 (2014)CrossRefGoogle Scholar
  25. 25.
    Sickafus, K.E., Grimes, R.W., Valdez, J.A., et al.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat Mater. 6, 217–223 (2007)CrossRefGoogle Scholar
  26. 26.
    Taylor, C.A., Patel, M.K., Aguiar, J.A., et al.: Bubble formation and lattice parameter changes resulting from He irradiation of defect-fluorite Gd2Zr2O7. Acta Mater. 115, 115–122 (2016)CrossRefGoogle Scholar
  27. 27.
    Soulié, A., Menut, D., Crocombette, J.P., et al.: X-ray diffraction study of the Y2Ti2O7 pyrochlore disordering sequence under irradiation. J Nucl Mater. 480, 314–322 (2016)CrossRefGoogle Scholar
  28. 28.
    Whittle, K.R., Blackford, M.G., Aughterson, R.D., et al.: Ion irradiation of novel yttrium/ytterbium-based pyrochlores: the effect of disorder. Acta Mater. 59(20), 7530–7537 (2011)CrossRefGoogle Scholar
  29. 29.
    Mandal, B.P., Banerji, A., Sathe, V., et al.: Order-disorder transition in Nd2−yGdyZr2O7 pyrochlore solid solution: an X-ray diffraction and Raman spectroscopic study. J Solid State Chem. 180(10), 2643–2648 (2007)CrossRefGoogle Scholar
  30. 30.
    Kong, L., Karatchevtseva, I., Gregg, D.J., et al.: Gd2Zr2O7, and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J Eur Ceram Soc. 33(15–16), 3273–3285 (2013)CrossRefGoogle Scholar
  31. 31.
    Mandal, B.P., Pandey, M., Tyagi, A.K.: Gd2Zr2O7, pyrochlore: potential host matrix for some constituents of thoria based reactor’s waste. J Nucl Mater. 406(2), 238–243 (2010)CrossRefGoogle Scholar
  32. 32.
    Brown, S., Gupta, H.C., Alonso, J.A., et al.: Vibrational spectra and force field calculation of A2Mn2O7 (A = Y, Dy, Er, Yb) pyrochlores. J Raman Spectrosc. 34(3), 240–243 (2003)CrossRefGoogle Scholar
  33. 33.
    Vandenborre, M.T., Husson, E., Chatry, J.P., et al.: Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields. J Raman Spectrosc. 14, 63–71 (1983)CrossRefGoogle Scholar
  34. 34.
    Vandenborre, M.T., Husson, E.: Comparison of the force field in various pyrochlore families. I. the A2B2O7 oxides. J Solid State Chem. 50, 362–371 (1983)CrossRefGoogle Scholar
  35. 35.
    Glerup, M., Nielsen, O.F., Poulsen, F.W.: The structural transformation from the pyrochlore structure A2B2O7 to the fluorite structure AO2 studied by Raman spectroscopy and defect chemistry modeling. J Solid State Chem. 160, 25–32 (2001)CrossRefGoogle Scholar
  36. 36.
    Gupta, H.C., Brown, S., Rani, N., Gohel, V.B.: A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores. Int J Inorg Mater. 3, 983–986 (2001)CrossRefGoogle Scholar
  37. 37.
    Li, Y.H., Wen, J., Wang, Y.Q., et al.: The irradiation effects of Gd2Hf2O7 and Gd2Ti2O7. Nucl Instrum Met. 287(287), 130–134 (2012)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Mianyang Vocational and Technical CollegeMianyangPeople’s Republic of China
  2. 2.State Key Laboratory of Environmental Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  3. 3.Chinese Academy of SciencesInstitute of Plasma PhysicsHefeiPeople’s Republic of China
  4. 4.Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations