Advertisement

Preparation of calcium manganese phosphate by mechanochemical synthesis of manganese and hydroxyapatite

  • Ahmed E. Hannora
Research
  • 11 Downloads

Abstract

Biocompatible hydroxyapatite (HA), with chemical formula Ca5(PO4)3(OH), is widely used in dentistry and orthopedics. Inorganic additions of metal ions into HA structure can significantly influence physicochemical properties of HA-based ceramics. Calcium manganese phosphate (Ca19Mn2(PO4)14) was successfully synthesized by mechanochemical method where the manganese was added to HA with 5, 10, 15, and 20 wt%. The mechanochemical process was investigated by using Fourier-transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and differential thermal analysis (DTA). The compacted circular disc samples heat-treated at 1200 °C were also investigated using field emission scanning electron microscopy (FE-SEM) where fine agglomerates with small grain size were found. Sample densification improved with increasing sintering temperature. Calcium manganese phosphate (Ca19Mn2(PO4)14), beta-tricalcium phosphate (β-Ca3(PO4)2), and manganese oxide (Mn2O3) phases were formed and increases with increasing sintering temperature. The electrochemical behaviors and corrosion rate were investigated by potentiodynamic polarization, which confirms low corrosion rate that calculated by weight loss test of HA/Mn sample in Hank’s solution. With increasing Mn content, Vicker’s hardness and contact angle of the 1200-°C sintered materials decrease.

Keywords

Manganese-hydroxyapatite Calcium manganese phosphate High-energy ball milling 

References

  1. 1.
    Narayanan, R., Seshadri, S.K., Kwon, T.Y., Kim, K.H.: Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications. Scr. Mater. 56(3), 229–232 (2007)CrossRefGoogle Scholar
  2. 2.
    Mayer, I., Pető, G., Karacs, A., Molnár, G., Popov, I.: Divalent Mn in calcium hydroxyapatite by pulse laser deposition. J. Inorg. Biochem. 104(10), 1107–1111 (2010).  https://doi.org/10.1016/j.jinorgbio.2010.06.009 CrossRefGoogle Scholar
  3. 3.
    Matsumoto, T., Tamine, K., Kagawa, R., Hamada, Y., Okazaki, M., Takahashi, J.: Different behavior of implanted hydroxyapatite depending on morphology, size and crystallinity. J. Ceram. Soc. Jpn. 114(9), 760–762 (2006)CrossRefGoogle Scholar
  4. 4.
    Paluszkiewicz, C., S’lósarczyk, A., Pijocha, D., Sitarz, M., Buc’ko, M., Zima, A., Chrós’cicka, A., Lewandowska-Szumieł, M.: Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J. Mol. Struct. 976(1–3), 301–309 (2010).  https://doi.org/10.1016/j.molstruc.2010.04.001 CrossRefGoogle Scholar
  5. 5.
    deAraujo, T.S., deSouza, S.O., Miyakawa, W., deSousa, E.M.B.: Phosphates nanoparticles doped with zinc and manganese for sunscreens. Mater. Chem. Phys. 124(2–3), 1071–1076 (2010).  https://doi.org/10.1016/j.matchemphys.2010.08.034 CrossRefGoogle Scholar
  6. 6.
    Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6(6), 1882–1894 (2010).  https://doi.org/10.1016/j.actbio.2009.12.041 CrossRefGoogle Scholar
  7. 7.
    Huang, Y., Qiao, H., Nian, X., Zhang, X., Zhang, X., Song, G., Xu, Z., Zhang, H., Han, S.: Improving the bioactivity and corrosion resistance properties of electrodeposited hydroxyapatite coating by dual doping of bivalent strontium and manganese ion. Surf. Coat. Technol. 291, 205–215 (2016).  https://doi.org/10.1016/j.surfcoat.2016.02.042 CrossRefGoogle Scholar
  8. 8.
    Fahami, A., Nasiri-Tabrizi, B., Beall, G.W., Tehrani, P., Basirun, W.: A top-down approach for the synthesis of nano-sized Ba-doped hydroxyapatite. J. Aust. Ceram. Soc. 53, 491 (2017).  https://doi.org/10.1007/s41779-017-0059-1 CrossRefGoogle Scholar
  9. 9.
    Li, Y., Nam, C.T., Ooi, C.P.: Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J. Phys. Conf. Ser. 187(1), 1–8 (2009).  https://doi.org/10.1088/1742-6596/187/1/012024 Google Scholar
  10. 10.
    Medvecky, L., Stulajterova, R., Parilak, L., Trpcevska, J., Durisin, J., Barinov, S.M.: Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf. A Physicochem. Eng. Asp. 281(1–3), 221–229 (2006).  https://doi.org/10.1016/j.colsurfa.2006.02.042 CrossRefGoogle Scholar
  11. 11.
    Moreira, M.P., de Almeida Soares, G.D., Dentzer, J., Anselme, K., de Sena, L.Á., Kuznetsov, A., dos Santos, E.A.: Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater. Sci. Eng. C. 61(1), 736–743 (2016).  https://doi.org/10.1016/j.msec.2016.01.004 CrossRefGoogle Scholar
  12. 12.
    Sutter, B., Ming, D.W., Clearfield, A., Hossner, L.R.: Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites. Soil Sci. Soc. Am. J. 67(6), 1935–1942 (2002).  https://doi.org/10.2136/sssaj2003.1935 CrossRefGoogle Scholar
  13. 13.
    Huang, Y., Ding, Q., Han, S., Yan, Y., Pang, X.: Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J. Mater. Sci. Mater. Med. 24(8), 1853–1864 (2013).  https://doi.org/10.1007/s10856-013-4955-9 CrossRefGoogle Scholar
  14. 14.
    Mayer, I., Gdalya, S., Burghaus, O., Reinen, D.: A spectroscopic and structural study of M(3d)2+-doped β-tricalcium phosphate—the binding properties of Ni2+ and Cu2+ in the pseudo-octahedral Ca(5)O6 host-sites. Z. Anorg. Allg. Chem. 635, 2039–2045 (2009).  https://doi.org/10.1002/zaac.200900236 CrossRefGoogle Scholar
  15. 15.
    Singh, R.P., Singh, G., Singh, H.: Sub-micrometric mesoporous strontium substituted hydroxyapatite particles for sustained delivery of vancomycin drug. J. Aust. Ceram. Soc. (2018).  https://doi.org/10.1007/s41779-018-0248-6
  16. 16.
    Sopyan, I., Ramesh, S., Nawawi, N.A., Tampieri, A., Sprio, S.: Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram. Int. 37(8), 3703–3715 (2011).  https://doi.org/10.1016/j.ceramint.2011.06.033 CrossRefGoogle Scholar
  17. 17.
    Dong, L., Zhu, Z., Qiu, Y., Zhao, J.: Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite. Front. Environ. Sci. Eng. (2014).  https://doi.org/10.1007/s11783-014-0722-5
  18. 18.
    Avvakumov, E., Senna, M., Kosova, N.: Soft mechanochemical synthesis: a basis for new chemical technologies. Springer US, New York (2001)Google Scholar
  19. 19.
    Balaz, P.: Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin (2008)Google Scholar
  20. 20.
    Nasiri-Tabrizi, B., Honarmandi, P., Ebrahimi-Kahrizsangia, R., Honarmandi, P.: Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater. Lett. 63(5), 543–546 (2009)CrossRefGoogle Scholar
  21. 21.
    Fuentes, A.F., Takacs, L.: Preparation of multicomponent oxides by mechanochemical methods. J. Mater. Sci. 48(2), 598–561 (2013).  https://doi.org/10.1007/s10853-012-6909-x CrossRefGoogle Scholar
  22. 22.
    Silva, C.C., Pinheiro, A.G., Miranda, M.A.R., Góes, J.C., Sombra, A.S.B.: Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci. 5(4), 553–558 (2003).  https://doi.org/10.1016/S1293-2558(03)00035-9 CrossRefGoogle Scholar
  23. 23.
    Hannora, A., Mamaeva, A., Mansurov, Z.: X-ray investigation of Ti-doped hydroxyapatite coating by mechanical alloying. Surf. Rev. Lett. 16(5), 781–786 (2009).  https://doi.org/10.1142/S0218625X09013256 CrossRefGoogle Scholar
  24. 24.
    Hannora, A.E., Mukasyan, A.S., A., M.Z.: Nanocrystalline hydroxyapatite/Si coating by mechanical alloying technique. Bioinorg. Chem. Appl. 2012(2012), 1–14 (2012).  https://doi.org/10.1155/2012/390104 CrossRefGoogle Scholar
  25. 25.
    Hannora, A.E., Ataya, S.: Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. J. Alloys Compd. 658, 222–233 (2016).  https://doi.org/10.1016/j.jallcom.2015.10.240 CrossRefGoogle Scholar
  26. 26.
    Fujitani, W., Kawaguchi, Y.H.N., Mori, S., Daito, K., Uchinaka, A., Matsumoto, T., Kojima, Y., Daito, M., Nakano, T., Matsuura, N.: Synthesis of hydroxyapatite continuing manganese and its evaluation of biocompatibility. Nano Biomedicine. 2(1), (2010)Google Scholar
  27. 27.
    Razeghi, M.: Fundamentals of solid state engineering, 3rd edn. Springer, New York (2009)Google Scholar
  28. 28.
    Mayer, I., Cuisinier, F.J.G., Gdalya, S., Popov, I.: TEM study of the morphology of Mn2+-doped calcium hydroxyapatite and ß-tricalcium. J. Inorg. Biochem. 102(2), 311–317 (2007).  https://doi.org/10.1016/j.jinorgbio.2007.09.004 CrossRefGoogle Scholar
  29. 29.
    Mann, S., Sparks, N.H.C., Scott, G.H.E., Vrind-De Jong, E.W.: Oxidation of manganese and formation of Mn3O4 (hausmannite) by spore coats of a marine Bacillus sp. Appl. Environ. Microbiol. 54(8), (1988)Google Scholar
  30. 30.
    Karaoğlu, E., Deligöz, H., Sözeri, H., Baykal, A., Toprak, M.S.: Hydrothermal synthesis and characterization of PEG-Mn3O4 nanocomposite. Nano-Micro Lett. 3(1), 25–33 (2011).  https://doi.org/10.5101/nml.v3i1.p25-33 CrossRefGoogle Scholar
  31. 31.
    Ullah, A.K.M.A., Kibria, A.K.M.F., Akter, M., Khan, M.N.I., Maksud, M.A., Jahan, R.A., Firoz, S.H.: Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment. J Saudi Chem Soc. (2017).  https://doi.org/10.1016/j.jscs.2017.03.008
  32. 32.
    Theophile, T.: Research of calcium phosphates using Fourier transform infrared spectroscopy. In: Theophile, T. (ed.) Infrared spectroscopy—materials science, engineering and technology, pp. 123–149. InTech (2012)Google Scholar
  33. 33.
    Evis, Z.: Al3+ doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. Jpn. 114(11), 1001–1004 (2006)CrossRefGoogle Scholar
  34. 34.
    Ben-Nissan, B., Pezzotti, G.: Bioceramics: processing routes and mechanical evaluation. J. Ceram. Soc. Jpn. 110(7), 601–608 (2002)CrossRefGoogle Scholar
  35. 35.
    Wang, J., Nonami, T., Yubata, K.: Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modified pseudo-body solution. J. Mater. Sci. Mater. Med. 19(7), 2663–2667 (2008).  https://doi.org/10.1007/s10856-007-3365-2 CrossRefGoogle Scholar
  36. 36.
    Gamal, G.A., Al-Mufadi, F.A., Said, A.H.: Effect of iron additives on the microstructure of hydroxyapatite. ETASR. 3(6), 532–539 (2013)Google Scholar
  37. 37.
    Law, K.-Y., Zhao, H.: Surface wetting characterization, contact angle, and fundamentals. Springer International Publishing, Basel (2016)Google Scholar
  38. 38.
    Hao, L., Lawrence, J.: Effects of CO2 laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia. Mater. Sci. Eng. C. 23(5), 627–639 (2003).  https://doi.org/10.1016/S0928-4931(03)00056-0 CrossRefGoogle Scholar
  39. 39.
    Ramesh, S., Tan, C.Y., Peralta, C.L., Teng, W.D.: The effect of manganese oxide on the sinterability of hydroxyapatite. Sci. Technol. Adv. Mater. 8(4), (2007).  https://doi.org/10.1016/j.stam.2007.02.006
  40. 40.
    Zainal Abidin, N.I., Atrens, A.D., Martin, D., Atrens, A.: Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C. Corros. Sci. 53(11), 3542–3556 (2011).  https://doi.org/10.1016/j.corsci.2011.06.030 CrossRefGoogle Scholar
  41. 41.
    Shi, Z., Atrens, A.: An innovative specimen configuration for the study of Mg corrosion. Corros. Sci. 53(1), 226–246 (2011).  https://doi.org/10.1016/j.corsci.2010.09.016 CrossRefGoogle Scholar
  42. 42.
    Chiu, C., Lu, C., Chen, S., Ou, K.: Effect of hydroxyapatite on the mechanical properties and corrosion behavior of Mg-Zn-Y alloy. Materials. 10(855), 1–16 (2017).  https://doi.org/10.3390/ma10080855 Google Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Faculty of Petroleum and Mining Engineering, Science and Mathematics DepartmentSuez UniversitySuezEgypt

Personalised recommendations