In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration

  • Jian-Chih Chen
  • Chia-Ling Ko
  • Dan-Jae Lin
  • Hui-Yu Wu
  • Chun-Cheng Hung
  • Wen-Cheng ChenEmail author


The objective was to investigate and compare the osseointegrative responses of sandblasted/acid-etched (SLA) and calcium phosphate (CaP) implants in vivo. The CaP implant was prepared by control group of SLA surface modification and anchoring with sintering ceramic of tetracalcium phosphate (TTCP) to form a mechanical interlocking film. Customized screw Ti implants (size Ø 2.0 mm × 6 mm length) were utilized to histologically examine the bone-to-implant contact (BIC) after implantation. The implant stability quotient scales in the postoperative implants within femurs were recorded. Subsequently, the postoperative implants were scanned using microcomputed tomography (micro-CT), and the topography was examined microscopically to analyze the BIC conditions. The SLA and CaP implant groups showed increased bone mineral density (g/cm3) and BIC (%). Compared with the SLA implant, the CaP implant with TTCP improved the early osteointegration of the BIC at 1-month post-operation and demonstrated quantitative effects on the BIC at 1-month post-operation. SLA and CaP implants all showed good osseointegration through micro-CT analysis (1–6 months). The current findings suggest the CaP anchoring Ti surface demonstrated improvement in early stages of osseointegration and thus shows the potential clinical benefits of TTCP anchoring on Ti surfaces in bone-level solutions.


Titanium Calcium phosphate Surface modification Sandblasted and acid etched (SLA) Histological 



The authors acknowledge and appreciate the assistance of Ms. Cian-Hua Liou, Ms. Ya-Yuan Chang, and Present Company Tuo-Huo Chang who customized and free provided the screw implants by Alliance Global Technology Co. in this research. The authors also thank the Precision Instrument Support Center of Feng Chia University, which provided the fabrication and measurement facilities. The assistance of the participants in this research is also acknowledged.


This work was supported by the Ministry of Science and Technology, Taiwan [grant numbers MOST 103-2221-E-035-099- and 105-2221-E-035-021-MY3].

Compliance with ethical standards

The animal testing procedures employed in this study were approved by the Institutional Animal Care and Use Committee of Kaohsiung Medical University. National Institutes of Health (NIH) guidelines for the care and use of laboratory animals (NIH Publication #85-23 Rev. 1985) were observed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

41779_2018_292_MOESM1_ESM.docx (274 kb)
ESM 1 (DOCX 273 kb)


  1. 1.
    Sul, Y.T., Byon, E.S., Jeong, Y.: Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant. Clin Implant Dent Relat Res. 6, 101–110 (2014)CrossRefGoogle Scholar
  2. 2.
    Gotfredsen, K., Berglundh, T., Lindhe, J.: Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2, 120–128 (2000)CrossRefGoogle Scholar
  3. 3.
    Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 23, 844–854 (2007)CrossRefGoogle Scholar
  4. 4.
    Buser, D.: Titanium for dental applications (II): implants with roughened surfaces. In: Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P. (eds.) Titanium in Medicine, pp. 876–888. Springer, Berlin (2001)Google Scholar
  5. 5.
    Albrektsson, T., Wennerberg, A.: Oral implant surfaces: part 2-review focusing on clinical knowledge of different surfaces. Int J Prosthodont. 17, 544–564 (2004)Google Scholar
  6. 6.
    Esposito, M., Coulthard, P., Thomsen, P., Worthington, H.V.: The role of implant surface modifications, shape and material on the success of osseointegrated dental implants, a Cochrane systematic review. Eur J Prosthodont Restor Dent. 13, 15–31 (2005)Google Scholar
  7. 7.
    Puleo, D.A., Thomas, M.V.: Implant surfaces. Dent Clin N Am. 50, 323–338 (2006)CrossRefGoogle Scholar
  8. 8.
    Teng, F.Y., Ko, C.L., Kuo, H.N., Hu, J.J., Lin, J.H., Lou, C.W., Hung, C.C., Wang, Y.L., Cheng, C.Y., Chen, W.C.: A comparison of epithelial cells, fibroblasts, and osteoblasts in dental implant titanium topographies. Bioinorg Chem Appl. 2012, 687–692 (2012)CrossRefGoogle Scholar
  9. 9.
    Calvo-Guirado, J.L., Satorres-Nieto, M., Aguilar-Salvatierra, A., Delgado-Ruiz, R.A., Maté-Sánchez de Val, J.E., Gargallo-Albiol, J., Gomez-Moreno, G., Romanos, G.: Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo. Clin Oral Investig. 19, 509–517 (2015)CrossRefGoogle Scholar
  10. 10.
    De Groot, K., Wolke, J.G.C., Jansen, J.A.: Calcium phosphate coatings for medical implants. Proc Inst Mech Eng Part H. 212, 137–147 (1998)CrossRefGoogle Scholar
  11. 11.
    Wennerberg, A., Albrektsson, T.: Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20, 172–184 (2009)CrossRefGoogle Scholar
  12. 12.
    Ko, C.L., Chang, Y.Y., Liou, C.H., Chen, W.C.: Characterization of the aspects of osteoprogenitor cell interactions with physical tetracalcium phosphate anchorage on titanium implant surfaces. Mater Sci Eng C. 49, 7–13 (2015)CrossRefGoogle Scholar
  13. 13.
    Dhaliwal, J.S., Albuquerque Jr., R.F., Murshed, M., Feine, J.S.: Osseointegration of standard and mini dental implants: a histomorphometric comparison. Int J Implant Dent. 3, 15 (2017)CrossRefGoogle Scholar
  14. 14.
    Sennerby, L., Meredith, N.: Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol. 47, 51–66 (2008)CrossRefGoogle Scholar
  15. 15.
    Scarano, A., Degidi, M., Lezzi, G., Petrone, G., Piattelli, A.: Correlation between implant stability quotient and bone-implant contact: a retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans. Clin Implant Dent Relat Res. 8, 218–222 (2006)CrossRefGoogle Scholar
  16. 16.
    Glauser, R., Lundgren, A.K., Gottlow, J., Sennerby, L., Portmann, M., Petra, R., Hammerle, C.H.F.: Immediate occlusal loading of Brånemark TiUniteTM implants placed predominantly in soft bone: 1-year results of a prospective clinical study. Clin Implant Dent Relat Res. 5, 47–56 (2003)CrossRefGoogle Scholar
  17. 17.
    Fernandes, E.L., Unikowski, I.L., Teixeira, E.R., da Costa, N.P., Shinkai, R.S.: Primary stability of turned and acid-etched screw-type implants: a removal torque and histomorphometric study in rabbits. Int J Oral Maxillofac Implants. 22, 886–892 (2007)Google Scholar
  18. 18.
    Faeda, R.S., Spin-Neto, R., Marcantonio, E., Guastaldi, A.C., Marcantonio Jr., E.: Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: histomorphometric study in rabbits. Microsc Res Tech. 75, 940–948 (2012)CrossRefGoogle Scholar
  19. 19.
    Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A.: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. 10, 557–579 (2014)CrossRefGoogle Scholar
  20. 20.
    Lohmann, C.H., Tandy, E.M., Sylvia, V.L., Hell-Vocke, A.K., Cochran, D.L., Dean, D.D., Boyan, B.D., Schwartz, Z.: Response of normal female human osteoblasts (NHOst) to 17β-estradiol is modulated by implant surface morphology. J Biomed Mater Res Part A. 62, 204–213 (2002)CrossRefGoogle Scholar
  21. 21.
    de Jonge, L.T., Leeuwenburgh, S.C.G., Wolke, J.G.C., Jansen, J.A.: Organicinorganic surface modifications for titanium implant surfaces. Pharm Res. 25, 2357–2369 (2008)CrossRefGoogle Scholar
  22. 22.
    Xie, C., Lu, H., Li, W., Chen, F.M., Zhao, Y.M.: The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci Mater Med. 23, 853–862 (2012)CrossRefGoogle Scholar
  23. 23.
    Bigi, A., Boanini, E., Bracci, B., Facchini, A., Panzavolta, S., Segattib, F., Sturba, L.: Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials. 26, 4085–4089 (2005)CrossRefGoogle Scholar
  24. 24.
    Ko, C.L., Chen, J.C., Tien, Y.C., Hung, C.C., Wang, J.C., Chen, W.C.: Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement. J Biomed Mater Res Part A. 103, 203–210 (2015)CrossRefGoogle Scholar
  25. 25.
    Canilias, M., Pena, P., de Aza, A.H., Rodríguez, M.A.: Calcium phosphates for biomedical applications. Boletín De La Sociedad Española De Cerámica Y Vidrio. 56, 91–112 (2017)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Department of Orthopedics, Faculty of Medical School, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  2. 2.Department of OrthopaedicsKaohsiung Municipal Siaogang HospitalKaohsiungTaiwan
  3. 3.Department of Fiber and Composite MaterialsFeng Chia UniversityTaichungRepublic of China
  4. 4.Dental Medical Devices and Materials Research Center, College of Dental MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  5. 5.Laser and Additive Manufacturing Technology CenterIndustrial Technology Research InstituteHsinchuTaiwan
  6. 6.Department of Dental HygieneChina Medical UniversityTaichungTaiwan
  7. 7.School of Dentistry, College of MedicineChina Medical UniversityTaichungTaiwan
  8. 8.Department of ProsthodonticsKaohsiung Medical University HospitalKaohsiungTaiwan

Personalised recommendations