Advertisement

Lightweight Design worldwide

, Volume 11, Issue 3, pp 58–63 | Cite as

Deep-drawing and backmolding process for plastic-magnesium hybrids

  • Christian Hopmann
  • Simon Wurzbacher
  • Erman Tekkaya
  • Hamed Dardaei Joghan
Production Hybrid Components
  • 167 Downloads

Plastic-steel hybrids have been used as economical lightweight components since the late 1990s. The properties of a thin-walled, deep-drawn metal profile are specifically combined with thoses of a thin-walled plastic ribbing. Even greater lightweight construction potential is offered by the use of wrought magnesium alloys used at the IKV and the IUL as metal components.

Plastic-Magnesium Hybrid

Magnesium has only 22 % of the density of steel, or 64 % of the density of aluminium. Due to the lower strength, a higher sheet thickness is required compared to steel. However, the weight saving with identical mechanical properties is more than 50 % compared to steel, depending on the load. Since the mechanical properties are comparable to aluminum, the weight saving is even about 30 % compared to aluminum [2, 3]. However, compared to fiber-reinforced plastics with similar densities, magnesium has the typical metallic properties such as high electrical and thermal conductivity and higher...

Notes

Thanks

The project “Development of hybrid plastic/magnesium composites for ultra-lightweight applications — KuMag” with the funding designation ERDF-0800113 is funded by the European Regional Development Fund (ERDF). We would like to take this opportunity to thank all the institutions for their support and encouragement.

References

  1. [1]
    Tecklenburg, G. (ed.): 17. Karosseriebautage Hamburg — 13. ATZ-Fachtagung. Wiesbaden: Springer Verlag, 2014Google Scholar
  2. [2]
    Behrens, B.; Vogt, O.: Umformung von Magnesium. In: Komponenten + Systeme (2005) 12, S. 44Google Scholar
  3. [3]
    Kaiser, O.; Krauss, O.; Seitz, H.; Kirmes, S.: Kurzanalyse Nr. 17: Ressourceneffizienz im Leichtbau. VDI Zentrum Ressourceneffizienz GmbH, Berlin, 2016Google Scholar
  4. [4]
    Hopmann, C.; Tekkaya, A.E.; Schild, J.; Hess, S.: Herstellung von Strukturbauteilen durch Tiefziehen und Hinterspritzen im Spritzgießwerkzeug. Institut für Kunststoffverarbeitung RWTH Aachen, Abschlussbericht zum AiF-Forschungsvorhaben Nr. 18075N, 2016Google Scholar
  5. [5]
    Huppmann, M.: Charakterisierung der Verformungsmechanismen der stranggepressten Magnesiumlegierungen AZ31 und ME21 unter monotoner und zyklischer Belastung. Berlin, Technische Universität, Dissertation, 2011Google Scholar
  6. [6]
    Kainer, K.U.: Magnesium — Eigenschaften, Anwendungen, Potenziale. Weinheim: Wiley-VCH-Verlag GmbH, 2000Google Scholar
  7. [7]
    Gall, S.: Grundlegende Untersuchungen zum Strangpressen von Magnesiumblechen und deren Weiterverarbeitung: Mikrostruktur und mechanische Eigenschaften. Berlin, Technische Universität, Dissertation, 2013Google Scholar
  8. [8]
    Stutz, L.: Das Umformverhalten von Magnesiumblechen der Legierungen AZ31 und ZE10. Berlin, Technische Universität, Dissertation, 2015Google Scholar
  9. [9]
    Goldbach, H.; Hoffner, J.: Hybridbauteil in der Serienfertigung. Firmenschrift Bayer AG, 2000Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Christian Hopmann
    • 1
  • Simon Wurzbacher
    • 1
  • Erman Tekkaya
    • 2
  • Hamed Dardaei Joghan
    • 2
  1. 1.RWTH Aachen UniversityGermany
  2. 2.TU Dortmund UniversityGermany

Personalised recommendations