Advertisement

Lightweight Design worldwide

, Volume 11, Issue 2, pp 6–13 | Cite as

Multi-material bodies for battery-electric vehicles

  • Martin Heinz Kothmann
  • Andreas Hillebrand
  • Günter Deinzer
Cover Story Multi-Material Design
  • 441 Downloads

Audi has collaborated with 19 industrial and scientific partners to examine how multi-material lightweight design canbeefficientlyimplemented in large-scale production. For this purpose, engineers have developed a new technology- oriented lightweight body concept to meet specific requirements imposed by electromobility.

Large-scale Production Processes

The SMiLE project (System-Integrated Multi-Material Lightweight Design for E-Mobility, German: Systemintegrativer Multimaterial-Leichtbau für die Elektromobilität) aims at gaining a better understanding of the problems of multi-material design against a background of creating large-scale production processes for efficient lightweight design. The project centers on developing a new type of technology-oriented body concept using lightweight design to meet special electromobility requirements. The key focus is on using new materials and material combinations to reduce the weight of functionally integrated vehicle components for innovative...

Notes

Thanks

The authors wish to thank the German Federal Ministry of Education and Research for funding the project SMiLE — Multi-material Lightweight Designs for Electromobility (FKZ 03X3041A) — and all project partners for the successful collaboration and their active support.

References

  1. [1]
    Deinzer, G.; Kothmann, M. H.; Roquette, D.; Diebold, F.: AUDI ultra-RTM: A Technology for High Performance and Cost Effective CFRP Parts for High Volume Production. ECCM17 — 17th European Conference on Composite Materials, München, 2016Google Scholar
  2. [2]
    Gerstenkorn, J.; Kothmann, M. H.; Diebold, F.; Deinzer, G.; Henning, F.: Der Kern macht den Unterschied: Hochleistungsfaserverbunde in Sandwichbauweise für die Großserie. In: Kunststoffe 3 (2017), pp. 56–59Google Scholar
  3. [3]
    Potter, K.: Resin Transfer Moulding. London: Chapman & Hall, 2011Google Scholar
  4. [4]
    Seuffert, J.; Kärger, L.; Henning, F.: Simulating mold filling in Compression Resin Transfer Molding (CRTM) using a three-dimensional finite-volume formulation, Journal of Composites Science (submitted)Google Scholar
  5. [5]
    Kärger, L.; Böhlke, T.; Weidenmann, K.-A.; Henning, F.: Integrierte Entwicklung kontinuierlich-diskontinuierlich langfaserverstärkter Polymerstrukturen im Rahmen des internationalen Graduiertenkollegs GRK 2078, Fachkongress Composite Simulation, Hamburg, 2016Google Scholar
  6. [6]
    Dörr, D.; Schirmaier, F. J.; Henning, F.; Kärger, L.: A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. In: Composites Part A: Applied Science and Manufacturing 94 (2017)CrossRefGoogle Scholar
  7. [7]
    Hohberg, M.; Baumgärtner, S.: Parameter Study on the Rib Filling Pattern of LFT in Combination with UD-Tapes. 7. CONNECT! European Moldflow User Meeting, Frankfurt a. M., 2016Google Scholar
  8. [8]
    Baumgärtner, S.; Henning, F.: Thermoplastic Composites for e-mobility — Tailored Lightweight Construction by use of UD tapes and LFT. Tagung 3rd International Composites Congress (ICC), Stuttgart, 2017Google Scholar
  9. [9]
    Rohde-Tibitanzl, M.: Direct Processing of Long Fiber Reinforced Thermoplastic Composites and their Mechanical Behavior under Static and Dynamic Load. München: Carl Hanser Verlag, 2015CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Martin Heinz Kothmann
    • 1
  • Andreas Hillebrand
    • 1
  • Günter Deinzer
    • 1
  1. 1.Germany

Personalised recommendations