Advertisement

Lightweight Design worldwide

, Volume 11, Issue 1, pp 12–17 | Cite as

Single-component composites made from pure cellulose

  • Johanna M. Spörl
  • Frank Hermanutz
  • Michael R. Buchmeiser
Cover Story Innovative Composites
  • 246 Downloads

Single-component composites made from pure cellulose are sustainable, recyclable, and biodegradable. This enables them to overcome the recycling issues associated with conventional fiber-reinforced composites. The DITF Denkendorf have been looking into the material properties, thepotential and the challenges of this class of alternative materials.

Introduction

Most fiber-reinforced plastics based on glass, carbon or natural fibers are produced using petroleum-based polymer matrices. With a production volume of 2.3 million tons p.a. in Europe, glass-fiber reinforced plastics (GFRP) used in construction and structural parts account for the largest share [1]. These materials, however, preclude the possibility of proper recycling. Since there is currently no technically viable method of fully recycling GFRP end-of-life waste (currently around 300,000 tons p.a. [2]), GFRP waste is disposed of through pyrolysis of the polymer matrix, with the residual ash having to go to landfill. In...

Notes

Thanks

The authors would like to thank the Baden-Württemberg Ministry for Economy, Labor and Housing for funding research initiative 7-4332.62-DITF/73, as well as Cordenka and BASF for providing the high-strength viscose fibers and the IL.

References

  1. 1]
    Witten, E.: Der GFK-Markt Europa — Composites-Marktbericht, 2015Google Scholar
  2. 2]
    Yazdanbakhsh, A.; Bank, L.: A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction. In: Polymers (2014), No. 6, 1810Google Scholar
  3. 3]
    Huber, T.; Müssig, J.; Curnow, O.; Pang, S.; Bickerton, S.; Staiger, M. P.: A critical review of all-cellulose composites. In: Journal of Materials Science (2012), No. 47, 1171–1186CrossRefGoogle Scholar
  4. 4]
    Spörl, J. M.; Batti, F.; Vocht, M.-P.; Raab, R.; Müller, A.; Hermanutz, F.; Buchmeiser, M. R.: Ionic Liquid Approach Toward Manufacture and Full Recycling of All-Cellulose Composites. In: Macromolecular Materials and Engineering (2018), 1700335Google Scholar
  5. 5]
    Hermanutz, F.: Textilverstärkter Formkörper, ein Verfahren zu dessen Herstellung sowie seine Verwendung. DE 102011122560, 2013Google Scholar
  6. 6]
    Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M. P.: Biodegradability of all-cellulose composite laminates. In: Composites Part A: Applied Science and Manufacturing (2014), No. 59, pp. 37–44CrossRefGoogle Scholar
  7. 7]
    Carus, M. Eder, A.; Scholz, L.: Bioverbundwerkstoffe—Naturfaserversträrkte Kunststoffe (NFK) undHolz-Polymer-Werkstoffe (WPC). F. N. R. e. V. (FNR), Gülzow, 2015, pp. 1–56Google Scholar
  8. 8]
    Schweindl, F.; Brand, C.: Himmlisch leicht. Gewichtseinsparungen am Fahrzeugdachhimmel durch naturfaserverstärkte Duroplaste. In: Kunststoffe (2016), No. 7, pp. 76–79Google Scholar
  9. 9]
    Carus, M.; Gahle, C.; Pendarovski, C.; Vogt, D.; Ortmann, S.; Grotenhermen, Breuer, F.; Schmidt, T.: Studie zur Markt- und Konkurrenzsituation bei Naturfasern und Naturfaser-Werkstoffen (Deutschland und EU) in Gülzower Fachgespräche. 26, F. N. R. e. V. (FNR), Gülzow, 2008, pp. 1–393Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  • Johanna M. Spörl
    • 1
  • Frank Hermanutz
    • 1
  • Michael R. Buchmeiser
    • 1
  1. 1.German Institutes of Textile and Fiber Research (DITF)DenkendorfGermany

Personalised recommendations