Lightweight Design worldwide

, Volume 10, Issue 6, pp 6–11 | Cite as

Lightweight Structures Based on Aluminium Foam Granules

  • Jörg Weise
  • Dirk Lehmhus
  • Joachim Baumeister
Cover Story Metal Foam

Fraunhofer IFAM and University of Bremen scientists combine aluminium foam granules with polymers and polymeric foams to yield lightweight materials. The resulting composites are specially adapted for the production of sandwiches and the flexible filling and reinforcement of hollow structures.

New Material Concepts

Current trends like increasing use of electric driven cars or more flexible and resource-efficient production methods in metalworking industry pose new challenges for lightweight construction. Besides design-based solutions also new material concepts have to make their contribution to address these challenges [1].

Combinations of porous and compact materials are currently used in a large variety of products, e.g. sandwiches with foam core, foam filled profiles or crash absorbing elements. The foams are mainly used in parts of the components where low mechanical loads are expected. Because of their low density, their high mass specific stiffness and their ability to absorb...


  1. [1]
    Lehmhus, D.; von Hehl, A.; Kayvantash, K.; Gradinger, R.; Becker, Th.; Schimanski, K.; Avalle, M.: Taking a downward turn on the weight spiral — Lightweight materials in transport applications. In: Materials and Design (2015), Vol. 66, pp. 385–389CrossRefGoogle Scholar
  2. [2]
    García-Moreno, F.: Commercial Applications of Metal Foams: Their Properties and Production. In: Materials 2 (2016), Vol. 9, pp. 85–111CrossRefGoogle Scholar
  3. [3]
    Lehmhus, D.; Baumeister, J.; Stutz, L.; Schneider, E.; Stöbener, K.; Avalle, M.; Peroni, L.; Peroni, M.: Mechanical Characterization of Particulate Aluminum Foams Strain-Rate, Density and Matrix Alloy versus Adhesive Effects. In: Advanced Engineering Materials (2010), Vol. 12, pp. 596–603CrossRefGoogle Scholar
  4. [4]
    Baumeister, J., German Patent, Patent DE 4018360, 1990Google Scholar
  5. [5]
    Figovsky, O.; Beilin, D.: Advanced Polymer Concretes and Compounds. CRC Press, Boca Raton, USA, 2014Google Scholar
  6. [6]
    Bernasconi, A.; Monno, M.; Schiavi, B; Mussi, V.: Design of a machine tool ram with sandwich panels and aluminium foam core. In: Proceedings of IX AITeM Conference, Torino, Italy, 7–9 Septembre 2009Google Scholar
  7. [7]
    Monno, M.; Goletti, M.; Mussi, V.; Baumeister, J.; Weise, J.: Dynamic behavior of hybrid APM and aluminum foam filled structures. In: Metals 2 (2012), pp. 211–218CrossRefGoogle Scholar
  8. [8]
    Baumeister, J.; Weise, J.; Hirtz, E.; Höhne, K.; Hohe, J.: Applications of Aluminium Hybrid Foam Sandwiches in Battery Housings for Electric Vehicles. In: Mat.-wiss. u. Werkstofftech. (2014) Vol. 45, pp. 1099–1107CrossRefGoogle Scholar
  9. [9]
    Freitag, J.: Die Merseburger Fürstengruft: Geschichte Zeremoniell Restaurierung (Eds: Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Vereinigten Domstiftern zu Merseburg und Naumburg und des Kollegiatstifts Zeitz), Michael Imhof Verlag, Petersberg, Germany, 2013, pp.71–78Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • Jörg Weise
    • 1
  • Dirk Lehmhus
    • 2
  • Joachim Baumeister
    • 1
  1. 1.Fraunhofer Institut für Fertigungstechnik und Angewandte Materialforschung IFAMBremenGermany
  2. 2.ISIS Sensorial Materials Scientific CentreUniversity of BremenBremenGermany

Personalised recommendations