Advertisement

Lightweight Design worldwide

, Volume 10, Issue 6, pp 28–33 | Cite as

Active Thermography for Automated Testing of Composite Structural Components

  • Markus Thurmeier
  • Alexander Stock
  • Michael Fischlschweiger
Production Component
  • 177 Downloads

While the use of active thermography for non-destructive testing supplies valuable information on component quality, the measurement results are still very often evaluated manually. Ottronic now presents a method that automatically classifies and interprets measured data. Active thermography is thus paving the way for intelligent, self-optimised production lines.

The new generation of Audi’s A8 model, Figure 1, is a recent example of the use of a wide range of materials in a vehicle’s structure. Multi-material design is the logical solution for taking account of the different functions and loads of individual components in the best possible way. Lightweight design plays an important role in increasing the energy efficiency of the entire vehicle. Besides conventional measures for optimising the weight of components when viewed in isolation, particularly systematic approaches help to reduce material and hence cost and weight.

References

  1. [1]
    Rettenwander, T.; Fischlschweiger, M.; Machado, M.; Steinbichler, G.; Major, Z.: Tailored patch placement on a base load carrying laminate: A computational structural optimisation with experimental validation. In: Composite Structures 116 (2014), pp. 48–54CrossRefGoogle Scholar
  2. [2]
    Rettenwander, T.; Fischlschweiger, M.; Steinbichler, G.: Computational structural tailoring of continuous fibre reinforced polymer matrix composites by hybridisation of principal stress and thickness optimisation. In: Composite Structures 108 (2014), pp. 711–719CrossRefGoogle Scholar
  3. [3]
    Machado, M.; Fischlschweiger M.; Major Z.: Strength of single-lap-joint assemblies of continuous unidirectional carbon fibre-reinforced thermoplastic matrix tapes under tensile loading. In: Journal of Composite Materials 49 (2015), pp. 1977–1987CrossRefGoogle Scholar
  4. [4]
    Nagy, J.; Reith, L.; Fischlschweiger, M.; Steinbichler, G.: Influence of fiber orientation and geometry variation on flow phenomena and reactive polymerization of €-caprolactam. In: Chemical Engineering Science 128 (2015), pp. 1–10.CrossRefGoogle Scholar
  5. [5]
    Arndt, R.; Hillemeier, B.; Maierhofer, C.; Rieck, C.; Röllig, M.; Scheel, H.; Walther, A.: Zerstörungsfreie Ortung von Fehlstellen und Inhomogenitäten in Bauteilen mit der Impuls-Thermografie. In: Bautechnik 81 (2004), pp. 786–793CrossRefGoogle Scholar
  6. [6]
    Fischlschweiger, M.: Integrated defect classification in manufacturing of carbon fibre reinforced thermoplastic polymer matrix composites. International Conference on Processing and Manufacturing of Advanced Materials, Graz, 2016Google Scholar
  7. [7]
    Fischlschweiger, M.; Stock, A. Thurmeier, M.: Integrated Defect Classification in Manufacturing of Carbon Fibre Reinforced Thermoplastic Polymer Matrix Composites. In: Materials Science Forum, 879 (2017)Google Scholar
  8. [8]
    Maierhofer, C.; Röllig, M.; Ehrig, K.; Meinel, D.: Validierung der aktiven Thermografie mittels CT zur Charakterisierung von Inhomogenitäten und Fehlstellen in CFK. In: DGZfP-DACH-Jahrestagung Mi.3.C.1. (2015)Google Scholar
  9. [9]
    Schachinger, A.: Prüfkompetenz bei Leichtbauteilen: FACC erhält Boeing Qualifikation für aktive Thermografie. Online: www.facc.com/Aktuelles/News-Presse/Pruefkompetenz-bei-Leichtbauteilen-FACC-erhaelt-Boeing-Qualifikation-fuer-aktive- Thermografie, access: 31.08.2017.
  10. [10]
    Zauner, G.; Mayr, G. Hendorfer, G.: Application of wavelet analysis in active thermography for nondestructive testing of CFRP composites. In: Proceedings of SPIE, 6383 (2006)Google Scholar
  11. [11]
    Thurmeier, M.; Fischlschweiger, M.; Stock, A.: Defying Hostile Environments. In: Kunststoffe international 6-7 (2016), pp. 32–34Google Scholar
  12. [12]
    Parker, W. J.; Jenkins, R. J.; Butler, C. P.; Abbott, G. L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of applied physics, 32 (1961), pp. 1679–1684CrossRefGoogle Scholar
  13. [13]
    Machado, M.; Fischlschweiger, M.; Major, Z.: A rate-dependent non-orthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites. In: Composites Part A: Applied Science and Manufacturing 80 (2016), pp. 194–203CrossRefGoogle Scholar
  14. [14]
    Machado, M.; Murenu, L.; Fischlschweiger, M.; Major, Z.: Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic- matrix composites during forming. Composites Part A: Applied Science and Manufacturing 86 (2016), pp. 39–48CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • Markus Thurmeier
    • 1
  • Alexander Stock
    • 2
  • Michael Fischlschweiger
    • 3
  1. 1.Fibre-reinforced Polymers and Advanced Development of BEVsAudi AGIngolstadtGermany
  2. 2.Ottronic Regeltechnik GmbHFohnsdorfAustria
  3. 3.Ottronic Regeltechnik GmbH and Ottronic Technology LaboratoryFohnsdorfAustria

Personalised recommendations