Earth Systems and Environment

, Volume 3, Issue 3, pp 563–573 | Cite as

Spatiotemporal Investigations of Aerosol Optical Properties Over Bangladesh for the Period 2002–2016

  • Md. Nazrul IslamEmail author
  • Md. Arfan Ali
  • Md. Monirul Islam
Original Article


This study investigates the aerosol optical properties over Bangladesh using Terra MODIS-based collection 06 (DT and DB) aerosol optical depth (AOD), ozone monitoring instrument (OMI)-based aerosol absorption optical depth (AAOD), emission database for global atmospheric research (EDGAR) measured black carbon (BC) and organic carbon (OC), and modern-era retrospective analysis for research and applications (MERRA) retrieved dust. In addition, ground-based aerosol robotic network (AERONET) retrieved optical properties such as aerosol volume size distribution, single scattering albedo (SSA), and asymmetry parameter (ASY) are studied in understanding the behavior of aerosol properties. Both the satellite-based MODIS DB and DT algorithms detect the high AOD (> 0.5) all over Bangladesh except for a small portion in the eastern side. High AOD is also observed in all seasons except for SON. AOD significantly (at 95% level) increased over the period 2002–2016. The correlation coefficient between MODIS and AERONET AOD at Dhaka University site is 0.78 (0.76) for DT (DB). The Expected Error envelope is found 75.70% (54.38%) with small (large) RMSE for DT (DB) product. OMI-based AAOD indicates the presence of absorbing aerosols over the study area which is confirmed with AEROENT-based SSA and ASY. Three different types of absorbing aerosols such as BC, OC, and dust are identified from the EDGAR and MERRA data. In Bangladesh, the BC, OC, and dust are significantly (at 95% level) increasing. Further work is suggested to simulate and assess aerosols against the observations, which will help projecting aerosols in the future climate.


Aerosols Bangladesh Collection 06 algorithm MODIS AEROENT 



We are grateful to the NASA Goddard Earth Science Data and Information Services Center (GES DISC) for providing the satellite-based MODIS aerosol products and AERONET data at 550 nm. The computational work is carried out on the Aziz Supercomputer at King Abdulaziz University’s High Performance Computing Centre, Jeddah, Saudi Arabia.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Ali MA, Assiri ME (2016) Spatio-temporal analysis of aerosol concentration over Saudi Arabia using satellite remote sensing techniques. Malays J Soc Sp 12:1–11Google Scholar
  2. Ali MA, Assiri ME (2019) Analysis of AOD from MODIS-Merged DT–DB products over the Arabian Peninsula. Earth Syst Environ. CrossRefGoogle Scholar
  3. Ali MA, Assiri M, Shahid S, Dambul R (2015) MODIS dark target and deep blue aerosol optical depth validation over Bangladesh. Malays J Soc Sp 11:74–83Google Scholar
  4. Ali MA, Assiri M, Dambul R (2017) Seasonal aerosol optical depth (AOD) variability using satellite data and its comparison over saudi arabia for the period 2002–2013. Aero Air Qual Res 17:1267–1280CrossRefGoogle Scholar
  5. Ali MA, Islam MM, Islam MN, Almazroui M (2019) Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmos Res 215:268–283CrossRefGoogle Scholar
  6. Almazroui M (2019) A comparison study between AOD data from MODIS deep blue collections 51 and 06 and from AERONET over Saudi Arabia. Atmos Res. CrossRefGoogle Scholar
  7. Almazroui M, Tayeb O, Mashat AS et al (2017) Saudi-KAU coupled global climate model: description and performance. Earth Syst Environ. CrossRefGoogle Scholar
  8. Begum BA, Biswas SK, Markwitz A, Hopke PK (2010) Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aero Air Qual Res 10:345–353CrossRefGoogle Scholar
  9. Bilal M, Nichol JE, Nazeer M (2016) Validation of aqua-MODIS C051 and C006 operational aerosol products using AERONET measurements over Pakistan. IEEE J Sel Top Appl Earth Obs Remote Sens 9:2074–2080CrossRefGoogle Scholar
  10. de Leeuw G, Sogacheva L, Rodriguez E, Kourtidis K, Georgoulias AK, Alexandri G, Amiridis V, Proestakis E, Marinou E, Xue Y, van der AR (2018) Two decades of satellite observations of AOD over mainland China in ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns. Atmos Chem Phys 18:1573–1592CrossRefGoogle Scholar
  11. Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  12. Dumka U, Tripathi SN, Misra A, Giles D, Eck T, Sagar R, Holben BN (2014) Latitudinal variation of aerosol properties from Indo-Gangetic plain to central Himalayan foothills during TIGERZ campaign. J Geophys Res 119:4750–4769Google Scholar
  13. Ehsan MA, Almazroui M, Yousef A (2017) Impact of different cumulus parameterization schemes in Saudi-KAU AGCM. Earth Syst Environ. CrossRefGoogle Scholar
  14. Emberson LD, Buker P, Ashmore MR, Mills G, Jackson L, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh K, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure response data or ozone effects on crop yields. Atmos Environ 43:1945–1953CrossRefGoogle Scholar
  15. Georgoulias AK, Alexandri G, Kourtidis KA, Lelieveld J, Zanis P, Amiridis V (2016) Differences between the MODIS Collection 6 and 5.1 aerosol datasets over the greater Mediterranean region. Atmos Environ 147:310–319CrossRefGoogle Scholar
  16. Ghasem A, Shamsipour A, Miri M, Safarrad T (2012) Synoptic and remote sensing analysis of dust events in southwestern Iran. Nat Hazards 64:1625–1638CrossRefGoogle Scholar
  17. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol Optical Depth from AERONET. J Geophys Res 106:12067–12097CrossRefGoogle Scholar
  18. Hsu NC, Tsay SC, King MD, Herman J (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Rem Sens 42:557–569CrossRefGoogle Scholar
  19. Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC (2013) Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118:9296–9315CrossRefGoogle Scholar
  20. Hu D, Zhang L, Wang H (2014) Aerosol optical depth investigated with satellite remote sensing observations in China. Earth Environ Sci 17:012003Google Scholar
  21. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, New York, pp 595–605Google Scholar
  22. Islam MN, Almazroui M (2012) Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: a regional climate model study. Clim Dyn 39:2239–2250CrossRefGoogle Scholar
  23. Islam MN, Uyeda H (2007) Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens Environ 108:264–276CrossRefGoogle Scholar
  24. Islam MM, Mamun MMI, Islam MZ, Keramat M (2017) Interactions of aerosol optical depth and cloud parameters with rainfall and the validation of satellite based rainfall observations. Atmos J Environ Sci 13:315–324Google Scholar
  25. Kaskaoutis DG, Kharol SK, Sinha PR, Singh RP, Badarinath KVS, Mehedi W, Sharma M (2011) Contrasting aerosol trends over South Asia during the last decade based on MODIS observations. Atmos Meas Tech Discuss 4:5275–5323CrossRefGoogle Scholar
  26. Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051CrossRefGoogle Scholar
  27. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420CrossRefGoogle Scholar
  28. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034CrossRefGoogle Scholar
  29. Levy RC, Munchak LA, Mattoo S, Patadia F, Remer LA, Holz RE (2015) Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmos Meas Tech 8:4083–4110CrossRefGoogle Scholar
  30. Mehta M, Singh R, Singh A, Singh N, Anshumali (2016) Recent global aerosol optical depth variations and trends—a comparative study using MODIS and MISR level 3 datasets. Remote Sens Environ 181:137–150CrossRefGoogle Scholar
  31. Mei LL, Xue Y, Kokhanovsky AA, von Hoyningen-Huene W, de Leeuw G, Burrows JP (2014) Retrieval of aerosol optical depth over land surfaces from AVHRR data. Atmos Meas Tech 7:2411–2420CrossRefGoogle Scholar
  32. Meij A, Pozzer A, Lelieveld J (2010) Global and regional trends in aerosol optical depth based on remote sensing products and pollutant emission estimates between 2009 and 2009. Atmos Chem Phys Discuss 10:30731–30776CrossRefGoogle Scholar
  33. Misra A, Jayaraman A, Ganguly D (2015) Validation of version 5.1 MODIS aerosol optical depth (deep blue algorithm and dark target approach) over a semi-arid location in western India. Aero Air Qual Res 15:252–262CrossRefGoogle Scholar
  34. More S, Kumar PP, Gupta P, Devara PCS, Aher GR (2013) Comparison of aerosol products retrieved from AERONET, MICROTOPS and MODIS over a tropical urban city, Pune, India. Aero Air Qual Res 13:107–121CrossRefGoogle Scholar
  35. Remer LA, Chin M, DeCola P, Feingold G, Halthore R, Kahn RA, Quinn PK, Rind D, Schwartz SE, Streets D, Yu H (2009) In: Chin M, Kahn RA, Schwartz SE (eds) atmospheric aerosol properties and climate impacts-executive summary, a report by the U.S. climate change science program and the subcommittee on global change research. National Aeronautics and Space Administration, Washington, D.C., pp 1‒20Google Scholar
  36. Salomonsen V, Barnes W, Maymon P, Montgomery H, Ostrow H (1989) MODIS—advanced facility instrument for studies of the earth as a system. IEEE Trans Geosci Remote 27:145–153CrossRefGoogle Scholar
  37. Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong MJ (2014) MODIS Collection 6 aerosol products: comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos 119:13965–13989CrossRefGoogle Scholar
  38. Sheel V, Sahu LK, Kajino M, Deushi M, Stein O, Nedelec P (2014) Seasonal and interannual variability of carbon monoxide based on MOZAIC observations, MACC reanalysis, and model simulations over an urban site in India. J Geophys Res Atmos 119:9123–9141CrossRefGoogle Scholar
  39. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ 73:337–349CrossRefGoogle Scholar
  40. Sogacheva L, de Leeuw G, Rodriguez E, Kolmonen P, Georgoulias AK, Alexandri G, Kourtidis K, Proestakis E, Marinou E, Amiridis V, Xue Y, van der A RJ (2018) Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017). Atmos Chem Phys 18:11389–11407CrossRefGoogle Scholar
  41. Sumit K, Devara PCS, Manoj MG (2012) Multi-site characterization of tropical aerosols: implications for regional radiative forcing. Atmos Res 106:71–85CrossRefGoogle Scholar
  42. Sun L, Wei J, Bilal M, Tian X, Jia C, Guo Y, Mi X (2016) Aerosol optical depth retrieval over bright areas using landsat OLI images. Remote Sens 8:23CrossRefGoogle Scholar
  43. Tanre D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971CrossRefGoogle Scholar
  44. Wang Q, Junji C, Yongming H, Jie T, Chongshu Z, Yonggang Z, Ningning Z, Zhenxing S, Haiyan N, Shuyu Z, Jiarui W (2018) Sources and physicochemical characteristics of blackcarbon aerosol from the southeastern Tibetan Plateau: internal mixing enhances light absorption. Atmos Chem Phys 45:4639–4656CrossRefGoogle Scholar
  45. Wei J, Sun L (2017) Comparison and evaluation of different MODIS aerosol optical depth products over the Beijing–Tianjin–Hebei region in China. IEEE J Select Top Appl Earth Obs Remote Sens 10:835–844CrossRefGoogle Scholar
  46. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic, AmsterdamGoogle Scholar
  47. Xie Y, Zhang YC, Xiong XJ, Qu J, Che H (2011) Validation of MODIS aerosol optical depth over China using CARSNET measurements. Atmos Environ 45:5970–5978CrossRefGoogle Scholar
  48. Zege EP, Ivanov AP, Katzev IL (1991) Image transfer through a scattering medium. Springer, Berlin, p 349CrossRefGoogle Scholar

Copyright information

© King Abdulaziz University and Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center of Excellence for Climate Change Research/Department of MeteorologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Electrical and Electronic EngineeringBegum Rokeya UniversityRangpurBangladesh

Personalised recommendations