Journal of the Indian Institute of Science

, Volume 99, Issue 1, pp 157–171 | Cite as

Modeling and Simulation of Dropwise Condensation: A Review

  • Manjinder Singh
  • Nilesh D. Pawar
  • Sasidhar Kondaraju
  • Supreet Singh BahgaEmail author
Review Article


In this review, we present significant developments that have been made in the mathematical modeling and simulations of dropwise condensation. In dropwise condensation, vapor condenses in the form of distinct drops. Modeling of DWC involves modeling heat transfer through a single drop and applying it to a population of drops. In the first part, we discuss heat transfer through a single droplet and compare the approximate analytical solution with the results of numerical simulations. We also address the shortcomings of the analytical model. In the second part, we present methods utilized to find the drop size distribution which are coupled with a model for heat transfer through the single droplet to obtain overall dropwise condensation heat transfer rate. In particular, we discuss the population balance method and the Monte Carlo method to predict drop size distribution and heat transfer rate. We support our discussion with the results from the literature.


Droplet growth Population balance method Monte Carlo simulations 



  1. 1.
    Ber JM (2007) High efficiency electric power generation: the environmental role. Prog Energy Combust Sci 33(2):107CrossRefGoogle Scholar
  2. 2.
    Agency IE (2015) Key world energy statistics. International Energy Agency, ParisGoogle Scholar
  3. 3.
    Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394CrossRefGoogle Scholar
  4. 4.
    Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotechnology 22(29):292001CrossRefGoogle Scholar
  5. 5.
    Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602CrossRefGoogle Scholar
  6. 6.
    Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112(5):1427CrossRefGoogle Scholar
  7. 7.
    Khawaji AD, Kutubkhanah IK, Wie JM (2008) Advances in seawater desalination technologies. Desalination 221(1):47CrossRefGoogle Scholar
  8. 8.
    Andrews HG, Eccles EA, Schofield WCE, Badyal JPS (2011) Three-dimensional hierarchical structures for fog harvesting. Langmuir 27(7):3798CrossRefGoogle Scholar
  9. 9.
    Lee A, Moon MW, Lim H, Kim WD, Kim HY (2012) Water harvest via dewing. Langmuir 28(27):10183CrossRefGoogle Scholar
  10. 10.
    Schemenauer RS, Cereceda P (1991) Fog-water collection in arid coastal locations. Ambio 20(7):303–308Google Scholar
  11. 11.
    Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir 22(21):8864CrossRefGoogle Scholar
  12. 12.
    Peters TB, McCarthy M, Allison J, Dominguez-Espinosa F, Jenicek D, Kariya H, Staats WL, Brisson JG, Lang JH, Wang EN (2012) Design of an integrated loop heat pipe air-cooled heat exchanger for high performance electronics. IEEE Trans Compon Packag Manuf Technol 2(10):1637CrossRefGoogle Scholar
  13. 13.
    Kim MH, Bullard CW (2002) Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 25(7):924CrossRefGoogle Scholar
  14. 14.
    Wen R, Ma X, Lee YC, Yang R (2018) Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond. Joule 2(11):2307CrossRefGoogle Scholar
  15. 15.
    Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer, New York, NY (electronic resource)CrossRefGoogle Scholar
  16. 16.
    Schmidt E, Schurig W, Sellschopp W (1930) Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech Mech Thermodyn 1(2):53Google Scholar
  17. 17.
    Carey VP (2007) Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation process in heat transfer equipment. Taylor & Francis, New York, NYGoogle Scholar
  18. 18.
    Rose JW (2002) Dropwise condensation theory and experiment: a review. Proc Inst Mech Eng Part A 216(2):115CrossRefGoogle Scholar
  19. 19.
    Tanasawa I, Utaka Y (1983) Measurement of condensation curves for dropwise condensation of steam at atmospheric pressure. J Heat Transf 105(3):633CrossRefGoogle Scholar
  20. 20.
    Stylianou S, Rose J (1983) Drop-to-filmwise condensation transition: heat transfer measurements for ethanediol. Int J Heat Mass Transf 26(5):747CrossRefGoogle Scholar
  21. 21.
    Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase change on a gradient surface. Science 291(5504):633CrossRefGoogle Scholar
  22. 22.
    Macner AM, Daniel S, Steen PH (2014) Condensation on surface energy gradient shifts drop size distribution toward small drops. Langmuir 30(7):1788CrossRefGoogle Scholar
  23. 23.
    Singh M, Kondaraju S, Bahga SS (2017) Enhancement of thermal performance of micro heat pipes using wettability gradients. Int J Heat Mass Transf 104:400CrossRefGoogle Scholar
  24. 24.
    Singh M, Kondaraju S, Bahga SS (2018) Mathematical model for dropwise condensation on a surface with wettability gradient. J Heat Transf 140:071502CrossRefGoogle Scholar
  25. 25.
    Vemuri S, Kim K, Wood B, Govindaraju S, Bell T (2006) Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl Therm Eng 26(4):421CrossRefGoogle Scholar
  26. 26.
    Enright R, Miljkovic N, Alvarado JL, Kim K, Rose JW (2014) Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys Eng 18(3):223CrossRefGoogle Scholar
  27. 27.
    Cho HJ, Preston DJ, Zhu Y, Wang EN (2017) Nanoengineered materials for liquid-vapour phase-change heat transfer. Nat Rev Mater 2(2):16092CrossRefGoogle Scholar
  28. 28.
    Tanaka H (1975) A theoretical study of dropwise condensation. J Heat Transf 97(1):72CrossRefGoogle Scholar
  29. 29.
    Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transf 133(8):081502CrossRefGoogle Scholar
  30. 30.
    Ranodolph A (2012) Theory of particulate processes 2e: analysis and techniques of continuous crystallization. Elsevier, California, CAGoogle Scholar
  31. 31.
    LeFevre E, Rose J (1966) A theory of heat transfer by dropwise condensation. In: Proceedings of the third international heat transfer conference, vol. 2 (Chicago, IL), vol. 2, pp 362 – 375Google Scholar
  32. 32.
    Savino R, Fico S (2004) Transient Marangoni convection in hanging evaporating drops. Phys Fluids 16(10):3738CrossRefGoogle Scholar
  33. 33.
    Guadarrama-Cetina J, Narhe RD, Beysens DA, González-Viñas W (2014) Droplet pattern and condensation gradient around a humidity sink. Phys Rev E 89:012402CrossRefGoogle Scholar
  34. 34.
    Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF, Park D, Kang DH, Chang Y, Takata Y, Miljkovic N (2016) Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32(31):7774CrossRefGoogle Scholar
  35. 35.
    Phadnis A, Rykaczewski K (2017) The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces. Int J Heat Mass Transf 115:148CrossRefGoogle Scholar
  36. 36.
    Rykaczewski K (2012) Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28(20):7720CrossRefGoogle Scholar
  37. 37.
    Xu Z, Zhang L, Wilke K, Wang EN (2018) Multiscale dynamic growth and energy transport of droplets during condensation. Langmuir 34(30):9085CrossRefGoogle Scholar
  38. 38.
    Maa JR (1978) Drop size distribution and heat flux of dropwise condensation. Chem Eng J 16(3):171CrossRefGoogle Scholar
  39. 39.
    Abu-Orabi M (1998) Modeling of heat transfer in dropwise condensation. Int J Heat Mass Transf 41(1):81CrossRefGoogle Scholar
  40. 40.
    Daniel S, Chaudhury MK (2002) Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18(9):3404CrossRefGoogle Scholar
  41. 41.
    Vemuri S, Kim K (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49(3–4):649CrossRefGoogle Scholar
  42. 42.
    De Gennes PG, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer-Verlag, New York, NYGoogle Scholar
  43. 43.
    Chandra S, Avedisian C (1991) On the collision of a droplet with a solid surface. In: Proceedings of the royal society of london a: mathematical, physical and engineering sciences, vol. 432 (The Royal Society), vol. 432, pp 13–41Google Scholar
  44. 44.
    Wang FC, Yang F, Zhao YP (2011) Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett 98(5):053112CrossRefGoogle Scholar
  45. 45.
    Lv C, Hao P, Yao Z, Song Y, Zhang X, He F (2013) Condensation and jumping relay of droplets on lotus leaf. Appl Phys Lett 103(2):021601CrossRefGoogle Scholar
  46. 46.
    Chaudhury MK, Chakrabarti A, Daniel S (2015) Generation of motion of drops with interfacial contact. Langmuir 31(34):9266CrossRefGoogle Scholar
  47. 47.
    Gose EE, Mucciardi A, Baer E (1967) Model for dropwise condensation on randomly distributed sites. Int J Heat Mass Transf 10(1):15CrossRefGoogle Scholar
  48. 48.
    Glicksman LR, Hunt AW (1972) Numerical simulation of dropwise condensation. Int J Heat Mass Transf 15(11):2251CrossRefGoogle Scholar
  49. 49.
    Burnside B, Hadi H (1999) Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int J Heat Mass Transf 42(16):3137CrossRefGoogle Scholar
  50. 50.
    Tanaka H (1975) Measurements of drop-size distributions during transient dropwise condensation. J Heat Mass Transf 97(3):341Google Scholar
  51. 51.
    Sikarwar BS, Battoo NK, Khandekar S, Muralidhar K (2011) Dropwise condensation underneath chemically textured surfaces: simulation and experiments. J Heat Mass Transf 133(2):021501Google Scholar
  52. 52.
    Beysens D, Knobler CM (1986) Growth of breath figures. Phys Rev Lett 57:1433CrossRefGoogle Scholar
  53. 53.
    Viovy JL, Beysens D, Knobler CM (1988) Scaling description for the growth of condensation patterns on surfaces. Phys Rev A 37:4965CrossRefGoogle Scholar
  54. 54.
    Fritter D, Knobler CM, Roux D, Beysens D (1988) Computer simulations of the growth of breath figures. J Stat Phys 52(5):1447CrossRefGoogle Scholar
  55. 55.
    Steyer A, Guenoun P, Beysens D, Fritter D, Knobler CM (1990) Growth of droplets on a one-dimensional surface: experiments and simulation. Europhys Lett (EPL) 12(3):211CrossRefGoogle Scholar
  56. 56.
    Steyer A, Guenoun P, Beysens D, Knobler CM (1991) Growth of droplets on a substrate by diffusion and coalescence. Phys Rev A 44:8271CrossRefGoogle Scholar
  57. 57.
    Meakin P (1992) Dropwise condensation: the deposition growth and coalescence of fluid droplets. Phys Scr T44:31CrossRefGoogle Scholar
  58. 58.
    Narhe RD, Khandkar MD, Shelke PB, Limaye AV, Beysens DA (2009) Condensation-induced jumping water drops. Phys Rev E 80:031604CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2019

Authors and Affiliations

  • Manjinder Singh
    • 1
  • Nilesh D. Pawar
    • 1
  • Sasidhar Kondaraju
    • 2
  • Supreet Singh Bahga
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.School of Mechanical SciencesIndian Institute of Technology BhubaneswarKhurdaIndia

Personalised recommendations