Advertisement

Unravelling the Importance of H bonds, σ–hole and π–hole-Directed Intermolecular Interactions in Nature

  • Subhajit Pramanik
  • Deepak ChopraEmail author
Review Article
  • 40 Downloads

Abstract

The field of intra- and intermolecular interactions has received a major boost in the past one decade. Significant advances in both instrumentation (for experimental purposes) and computational resources (development of theoretical models) have provided strong impetus to this area of research. The understanding of the nature, energetics and the topological characteristics of these interactions are the driving forces which govern intermolecular recognition. This is strongly dependent on the state of aggregation of the substance. The environment (solid, liquid and gas) plays an extremely crucial and subtle role in deciphering the mechanism via which molecules interact with each other. In the past two decades, there has been rigorous development in the understanding of strong hydrogen bonds. The focus has now shifted towards the quantitative assessment of weak intermolecular interactions, of the type C–H···X (X = F in particular), X···X, X(lp)···π along with σ–hole-directed intermolecular interactions involving tetrels, chalcogens, pnictogens, halogens and the aerogens. In addition, there is increasing evidence for the assessment of the relevance of π–hole-based interactions in tetrels, chalcogens, and pnictogens as well. The current perspective highlights the importance of the above-mentioned interactions and their associated electronic features. This has strong implications in the area of materials and related applied sciences with relevance towards the technological applications of these interactions in terms of understanding structure–property correlation in the mechanical, optical and electrical properties of matter.

Notes

Acknowledgements

SP and DC thank IISER Bhopal for research facilities and infrastructure. The authors thank Rohit Bhowal and Koushik Mandal for their help in editing the manuscript

References

  1. 1.
    Chopra D (2018) Understanding intermolecular interactions in the solid state: approaches and techniques. Royal Society of Chemistry, LondonCrossRefGoogle Scholar
  2. 2.
    Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New YorkCrossRefGoogle Scholar
  3. 3.
    Gilli G, Gilli P (2009) The nature of hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Arunan E et al (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637CrossRefGoogle Scholar
  5. 5.
    Hathwar VR et al (2014) Revealing the polarizability of organic fluorine in the trifluoromethyl group: implications in supramolecular chemistry. Cryst Growth Des 14:5366CrossRefGoogle Scholar
  6. 6.
    Munshi P, Guru Row TN (2005) Exploring the lower limit in hydrogen bonds: analysis of weak C–H···O and C–H···π interactions in substituted coumarins from charge density analysis. J Phys Chem A 109:659CrossRefGoogle Scholar
  7. 7.
    Mondal PK, Chopra D (2018) Role of halogen-involved intermolecular inter­actions and existence of isostructurality in the crystal packing of —CF3 and halogen (Cl or Br or I) substituted benzamides. Acta Cryst B 74:574CrossRefGoogle Scholar
  8. 8.
    Jeffrey GA, Takagi S (1978) Hydrogen-bond structure in carbohydrate crystals. Acc Chem Res 11:264CrossRefGoogle Scholar
  9. 9.
    Grabowski SJ (2017) Hydrogen bonds, and σ–hole and π–hole bonds—mechanisms protecting doublet and octet electron structures. Phys Chem Chem Phys 19:29742CrossRefGoogle Scholar
  10. 10.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14:278CrossRefGoogle Scholar
  11. 11.
    Clark T et al (2007) Halogen bonding: the σ–hole. J Mol Model 13:291CrossRefGoogle Scholar
  12. 12.
    Politzer P et al (2013) Halogen bonding and other σ–hole interactions: a perspective. Phys Chem Chem Phys 15:11178CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS (2017) Sigma–hole interactions: perspectives and misconceptions. Crystals 7:212CrossRefGoogle Scholar
  14. 14.
    Wang H et al (2016) σ–hole bond vs π–hole bond: a comparison based on halogen bond. Chem Rev 116:5072CrossRefGoogle Scholar
  15. 15.
    Neaton JB (2017) A direct look at halogen bonds, high-resolution images of halogen-containing molecules reveal unusual bonding patterns. Science 358:167CrossRefGoogle Scholar
  16. 16.
    Pascoe DJ et al (2017) The origin of chalcogen-bonding interactions. J Am Chem Soc 139:15160CrossRefGoogle Scholar
  17. 17.
    Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280CrossRefGoogle Scholar
  18. 18.
    Quinonero D (2017) Sigma–hole carbon-bonding interactions in carbon–carbon double bonds: an unnoticed contact. Phys Chem Chem Phys 19:15530CrossRefGoogle Scholar
  19. 19.
    Grabowski SJ (2014) Tetrel bond–σ hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16:1824CrossRefGoogle Scholar
  20. 20.
    Grabowski SJ (2014) Halogen bond with the multivalent halogen acting as the Lewis acid center. Chem Phys Lett 605–606:131CrossRefGoogle Scholar
  21. 21.
    Riera AB (2017) On the importance of σ-/π–hole interaction in chemistry and in biochemistry. Ph.D. thesis, University of Balearic Islands, Balearic Islands, SpainGoogle Scholar
  22. 22.
    Politzer P et al (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748CrossRefGoogle Scholar
  23. 23.
    Riley KE, Hobza P (2013) The relative roles of electrostatics and dispersion in the stabilization of halogen bonds. Phys Chem Chem Phys 15:17742CrossRefGoogle Scholar
  24. 24.
    Lipkowski P et al (2006) Properties of the halogen-hydride interaction: an ab initio and “atoms in molecules” analysis. J Phys Chem A 110:10296CrossRefGoogle Scholar
  25. 25.
    Guthrie F (1863) On the iodide of iodammonium. J Chem Soc 16:239CrossRefGoogle Scholar
  26. 26.
    Hassel O, Hvoslef J (1954) Direct structural evidence for weak charge transfer bond in solid containing chemically structured molecule. Acta Chem Scand 8:873CrossRefGoogle Scholar
  27. 27.
    Hassel O, Romming C (1962) Direct structural evidence for weak charge transfer bonds in solids containing chemically saturated molecules. Q Rev Chem Soc 16:1CrossRefGoogle Scholar
  28. 28.
    Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497CrossRefGoogle Scholar
  29. 29.
    Brinck T et al (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44:57CrossRefGoogle Scholar
  30. 30.
    Desiraju GR et al (2013) Definition of the halogen bond (IUPAC Recommendations 2013. Pure Appl Chem 85:1711CrossRefGoogle Scholar
  31. 31.
    Chopra D (2012) Is organic fluorine really “not” polarizable? Cryst Growth Des 12:541CrossRefGoogle Scholar
  32. 32.
    Sirohiwal A et al (2017) Characterization of fluorine-centred ‘F···O’ σ–hole interactions in the solid state. Acta Cryst B. 73:140CrossRefGoogle Scholar
  33. 33.
    Costa PJ (2017) The halogen bond: nature and applications. Phys Sci Rev 2:20170136Google Scholar
  34. 34.
    Voth AR (2009) Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nat Chem 1:74CrossRefGoogle Scholar
  35. 35.
    Lommerse JPM et al (1996) The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118:3108CrossRefGoogle Scholar
  36. 36.
    Riley KE et al (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309CrossRefGoogle Scholar
  37. 37.
    Riley KE et al (2009) Br···O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155CrossRefGoogle Scholar
  38. 38.
    Krawczuk A et al (2014) PolaBer: a program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning. J Appl Cryst 47:1452CrossRefGoogle Scholar
  39. 39.
    Riley KE et al (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651CrossRefGoogle Scholar
  40. 40.
    Desiraju GR, Parthasarathy RJ (1989) The nature of halogen–halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J Am Chem Soc 111:8725CrossRefGoogle Scholar
  41. 41.
    Metrangolo P, Resnati G (2014) Type II halogen···halogen contacts are halogen bonds. IUCrJ. 1:5CrossRefGoogle Scholar
  42. 42.
    Wolters LP et al (2014) The many faces of halogen bonding: a review of theoretical models and methods. Comput Mol Sci 4:523CrossRefGoogle Scholar
  43. 43.
    Palusiak M (2010) On the nature of halogen bond—the Kohn–Sham molecular orbital approach. J Mol Struct (Theochem) 945:89CrossRefGoogle Scholar
  44. 44.
    Rosokha SV, Traversa A (2015) From charge transfer to electron transfer in halogen-bonded complexes of electrophilic bromocarbons with halide anions. Phys Chem Chem Phys 17:4989CrossRefGoogle Scholar
  45. 45.
    Cabot R, Hunter CA (2009) Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. Chem Commun (15):2005–2007Google Scholar
  46. 46.
    Wolters LP, Bickelhaupt FM (2012) Halogen bonding versus hydrogen bonding: a molecular orbital perspective. Chem Open 1:96Google Scholar
  47. 47.
    Lindblad S et al (2018) Halogen bond asymmetry in solution. J Am Chem Soc 140:13503CrossRefGoogle Scholar
  48. 48.
    Oliveira V et al (2016) The intrinsic strength of the halogen bond: electrostatic and covalent contributions described by coupled cluster theory. Phys Chem Chem Phys 18:33031CrossRefGoogle Scholar
  49. 49.
    Oliveira V et al (2017) Quantitative assessment of halogen bonding utilizing vibrational spectroscopy. Inorg Chem 56:488CrossRefGoogle Scholar
  50. 50.
    Duarte DJR (2016) Halogen bonding. The role of the polarizability of the electron-pair donor. Phys Chem Chem Phys 18:7300CrossRefGoogle Scholar
  51. 51.
    Stone AJ (2017) Natural bond orbitals and the nature of the hydrogen bond. J Phys Chem A 121:1531CrossRefGoogle Scholar
  52. 52.
    Wang JW (2017) Halogen-bonding contacts determining the crystal structure and fluorescence properties of organic salts. New J Chem 41:9444CrossRefGoogle Scholar
  53. 53.
    Khavasi HR, Tehrani AA (2013) Halogen bonding synthon crossover in conformational polymorphism. CrystEngComm 15:5813CrossRefGoogle Scholar
  54. 54.
    Noa FMA et al (2017) Halogen-bonding, isomorphism, polymorphism, and kinetics of enclathration in host−guest compounds. Cryst Growth Des 17:4647CrossRefGoogle Scholar
  55. 55.
    Christopherson JC (2018) Halogen-bonded cocrystals as optical materials: next-generation control over light−matter interactions. Cryst Growth Des 18:1245CrossRefGoogle Scholar
  56. 56.
    Bennington JC (2016) Isostructural cocrystals of 1,3,5-trinitrobenzene assembled by halogen bonding. Cryst Growth Des 16:4688CrossRefGoogle Scholar
  57. 57.
    Mukherjee A, Desiraju GR (2014) Halogen bonds in some dihalogenated phenols: applications to crystal engineering IUCrJ 1:49Google Scholar
  58. 58.
    Erdelyi M (2017) Application of the halogen bond in protein systems. Biochemistry 56:2759CrossRefGoogle Scholar
  59. 59.
    Rosenfield RE Jr et al (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99:4860CrossRefGoogle Scholar
  60. 60.
    Parthasarathy R, Row TNG (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. S–S interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103:477CrossRefGoogle Scholar
  61. 61.
    Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313CrossRefGoogle Scholar
  62. 62.
    Nagao Y et al (1998) Intramolecular nonbonded S···O interaction recognized in (acylimino)thiadiazoline derivatives as angiotensin ii receptor antagonists and related compounds. J Am Chem Soc 120:3104CrossRefGoogle Scholar
  63. 63.
    Murray JS et al (2007) σ–hole bonding: molecules containing group VI atoms. J Mol Model 13:1033CrossRefGoogle Scholar
  64. 64.
    Murray JS et al (2008) Simultaneous σ–hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770CrossRefGoogle Scholar
  65. 65.
    Shukla R, Chopra D (2016) Crystallographic and theoretical investigation on the nature and characteristics of type I C=S···S=C interactions. Cryst Growth Des 16:6734CrossRefGoogle Scholar
  66. 66.
    Wang W et al (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132CrossRefGoogle Scholar
  67. 67.
    Murray JS et al (2009) Expansion of the σ–hole concept. J Mol Model 15:723CrossRefGoogle Scholar
  68. 68.
    Pecina A et al (2015) Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J Phys Chem A 119:1388CrossRefGoogle Scholar
  69. 69.
    Iwaoka M et al (2002) Statistical and theoretical investigations on the directionality of nonbonded S···O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124:10613CrossRefGoogle Scholar
  70. 70.
    Iwaoka M et al (2001) Statistical characterization of nonbonded S···O interactions in proteins. Chem Lett 30:132CrossRefGoogle Scholar
  71. 71.
    Mahmudov KT et al (2017) Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans 46:10121CrossRefGoogle Scholar
  72. 72.
    Benz S et al (2016) Anion transport with chalcogen bonds. J Am Chem Soc 138:9093CrossRefGoogle Scholar
  73. 73.
    Knight FR et al (2010) Hypervalent adducts of chalcogen-containing peri-substituted naphthalenes; reactions of sulfur, selenium, and tellurium with dihalogens. Inorg Chem 49:7577CrossRefGoogle Scholar
  74. 74.
    Chivers T, Konu J (2009) Ligand-stabilized chalcogen dications. Angew Chem Int Ed 48:3025CrossRefGoogle Scholar
  75. 75.
    Kusamoto T (2013) Utilization of σ–holes on sulfur and halogen atoms for supramolecular cation···anion interactions in bilayer Ni(dmit)2 anion radical salts. Cryst Growth Des 13:4533CrossRefGoogle Scholar
  76. 76.
    Adhikari U, Scheiner S (2014) Effects of charge and substituent on the S···N chalcogen bond. J Phys Chem 118:3183CrossRefGoogle Scholar
  77. 77.
    Alikhani E et al (2014) Topological reaction sites—very strong chalcogen bonds. Phys Chem Chem Phys 16:2430CrossRefGoogle Scholar
  78. 78.
    Sanz P (2003) Resonance-assisted intramolecular chalcogen–chalcogen interactions? Chem Eur J 9:4548CrossRefGoogle Scholar
  79. 79.
    Fourmigue M, Batail P (2004) Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. Chem Rev 104:5379CrossRefGoogle Scholar
  80. 80.
    Bhandary S et al (2018) Dispersion stabilized Se/Te···π double chalcogen bonding synthons in in situ cryocrystallized divalent organochalcogen liquids. Cryst Growth Des 18:3734CrossRefGoogle Scholar
  81. 81.
    Biot N, Bonifazi D (2018) Programming recognition arrays through double chalcogen-bonding interactions. Chem Eur J 24:5439CrossRefGoogle Scholar
  82. 82.
    Cavallo G et al (2016) The halogen bond. Chem Rev 116:2478CrossRefGoogle Scholar
  83. 83.
    Morgan RS et al (1978) Chains of alternating sulfur and π-bonded atoms in eight small proteins. Int J Pept Protein Res 11:209CrossRefGoogle Scholar
  84. 84.
    Tauer TP (2005) Estimates of the ab initio limit for sulfur−π interactions: the H2S−benzene dimer. J. Phys. Chem. 109:191CrossRefGoogle Scholar
  85. 85.
    Karshikoff A (2006) Non-covalent interactions in proteins. Imperial College Press, SingaporeCrossRefGoogle Scholar
  86. 86.
    Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42:8617CrossRefGoogle Scholar
  87. 87.
    Bondi A et al (1964) van der Waals volumes and radii. J Phys Chem 68:441CrossRefGoogle Scholar
  88. 88.
    Werz DB et al (2002) Nanotube formation favored by chalcogen–chalcogen interactions. J Am Chem Soc 124:10638CrossRefGoogle Scholar
  89. 89.
    Gonzalez FV et al (2010) Stereoisomerization of β-hydroxy-α-sulfenyl-γ-butyrolactones controlled by two concomitant 1,4-type nonbonded sulfur-oxygen interactions as analyzed by X-ray crystallography. J Org Chem 75:5888CrossRefGoogle Scholar
  90. 90.
    Shuvaev KV et al (2008) NC–(CF2)4–CNSSN· containing 1,2,3,5-dithiadiazolyl radical dimer exhibiting triplet excited states at low temperature and thermal hysteresis on melting–solidification: structural, spectroscopic, and magnetic characterization. Dalton Trans 14:4029CrossRefGoogle Scholar
  91. 91.
    Menichetti S et al (2016) Role of noncovalent sulfur···oxygen interactions in phenoxyl radical stabilization: synthesis of super tocopherol-like antioxidants. Org Lett 18:5464CrossRefGoogle Scholar
  92. 92.
    Mikherdov AS et al (2016) Difference in energy between two distinct types of chalcogen bonds drives regioisomerization of binuclear (diaminocarbene) PdII complexes. J Am Chem Soc 138:14129CrossRefGoogle Scholar
  93. 93.
    Benz S et al (2017) Catalysis with chalcogen bonds. Angew Chem Int Ed 56:812CrossRefGoogle Scholar
  94. 94.
    Robinson ERT et al (2013) Anhydrides as a,b-unsaturated acyl ammonium precursors: isothiourea-promoted catalytic asymmetric annulation processes. Chem Sci 4:2193CrossRefGoogle Scholar
  95. 95.
    Fukata Y et al (2015) Facile net cycloaddition approach to optically active 1,5-benzothiazepines. J Am Chem Soc 137:5320CrossRefGoogle Scholar
  96. 96.
    Manna D, Mugesh G (2012) Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving co-operative chalcogen and halogen bonding. J Am Chem Soc 134:4269CrossRefGoogle Scholar
  97. 97.
    Robinson ERT et al (2016) Non-bonding 1,5-S/O interactions govern chemo and enantioselectivity in isothiourea-catalyzed annulations of benzazoles. Chem Sci 7:6919CrossRefGoogle Scholar
  98. 98.
    Kojima T et al (2004) Synthesis and characterization of dibenzodioxadiselenafulvalene. J Org Chem 69:9319CrossRefGoogle Scholar
  99. 99.
    Dutton JL et al (2009) Synthesis of N,C bound sulfur, selenium, and tellurium heterocycles via the reaction of chalcogen halides with –CH3 substituted diazabutadiene ligands. Inorg Chem 48:3239CrossRefGoogle Scholar
  100. 100.
    Knight FR et al (2012) Noncovalent interactions in peri-substituted chalconium acenaphthene and naphthalene salts: a combined experimental, crystallographic, computational, and solid-state NMR study. Inorg Chem 51:11087CrossRefGoogle Scholar
  101. 101.
    Thomas SP et al (2015) “Conformational simulation” of sulfamethizole by molecular complexation and insights from charge density analysis: role of intramolecular S···O chalcogen bonding. Cryst Growth Des 15:2110CrossRefGoogle Scholar
  102. 102.
    Garrett GE et al (2016) Anion recognition by a bidentate chalcogen bond donor. Chem Commun 52:9881CrossRefGoogle Scholar
  103. 103.
    Suzuki T et al (1992) Clathrate formation and molecular recognition by novel chalcogen-cyano interactions in tetracyanoquinodimethanes fused with thiadiazole and selenadiazole rings. J Am Chem Soc 114:3034CrossRefGoogle Scholar
  104. 104.
    Zhao H, Gabbaï F (2010) A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat Chem 2:984CrossRefGoogle Scholar
  105. 105.
    Jentzsch AV et al (2013) Synthetic ion transporters that work with anion–π interactions, halogen bonds, and anion–macrodipole interactions. Acc Chem Res 46:2791CrossRefGoogle Scholar
  106. 106.
    Beno BR et al (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383CrossRefGoogle Scholar
  107. 107.
    Bauer S et al (2009) Enantiomerically pure bis(phosphanyl)carbaborane(12) compounds. Eur J Inorg Chem.  https://doi.org/10.1002/ejic.200900304 CrossRefGoogle Scholar
  108. 108.
    Hill WE, Silva-Trivino LM (1979) Preparation and characterization of di(tertiary phosphines) with electronegative substituents. 2. Unsymmetrical derivatives. Inorg Chem 18:361CrossRefGoogle Scholar
  109. 109.
    Kilian P et al (2003) Naphthalene-1,8-diyl bis(halogenophosphanes): novel syntheses and structures of useful synthetic building blocks. Chem Eur J 9:215CrossRefGoogle Scholar
  110. 110.
    Zahn S et al (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034CrossRefGoogle Scholar
  111. 111.
    Del Bene JE et al (2011) Structures, energies, bonding, and nmr properties of pnicogen complexes H2XP:NXH2 (X=H, CH3, NH2, OH, F, Cl). J Phys Chem A 115:13724CrossRefGoogle Scholar
  112. 112.
    Sarkar S et al (2015) Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330CrossRefGoogle Scholar
  113. 113.
    Tripathi G et al (2016) N···N pnicogen bonds in Boc-DOPA-OMe. Chem Phys Lett 653:117CrossRefGoogle Scholar
  114. 114.
    Scheiner S (2011) Can two trivalent N atoms engage in a direct N···N noncovalent interaction? Chem Phys Lett 514:32CrossRefGoogle Scholar
  115. 115.
    Avtomonov EV et al (1996) Syntheses and structures of cyclopentadienyl arsenic compounds part 1: pentamethylcyclopentadienyl arsenic dihalides (Cp*AsX2;X = F, Cl, Br, I). J Organomet Chem 524:253CrossRefGoogle Scholar
  116. 116.
    Murray JS et al (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286CrossRefGoogle Scholar
  117. 117.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609CrossRefGoogle Scholar
  118. 118.
    Scheiner S (2011) A new noncovalent force: comparison of P···N interaction with hydrogen and halogen bonds. J Chem Phys 134:094315CrossRefGoogle Scholar
  119. 119.
    Scheiner S (2011) Effects of Substituents upon the P···N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202CrossRefGoogle Scholar
  120. 120.
    Bene JED et al (2012) Structures, binding energies, and spin−spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2, X = F, Cl, CN, CH3, NC. J Phys Chem A 116:3056CrossRefGoogle Scholar
  121. 121.
    Moilanen J et al (2009) Weak interactions between trivalent pnictogen centers: computational analysis of bonding in dimers X3E EX3 (E = pnictogen, X = halogen). Inorg Chem 48:6740CrossRefGoogle Scholar
  122. 122.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083CrossRefGoogle Scholar
  123. 123.
    Setiawan D (2015) Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 119:1642CrossRefGoogle Scholar
  124. 124.
    Bene JED et al (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386CrossRefGoogle Scholar
  125. 125.
    Schmauck J, Breugst M (2017) The potential of pnicogen bonding for catalysis—a computational study. Org Biomol Chem 15:8037CrossRefGoogle Scholar
  126. 126.
    Bauza A et al (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52:12317CrossRefGoogle Scholar
  127. 127.
    Alkorta I et al (2001) Molecular complexes between silicon derivatives and electron-rich groups. J Phys Chem A 105:743CrossRefGoogle Scholar
  128. 128.
    Alkorta I (2001) Aminopropylsilanes versus silatranes: an experimental and theoretical study. J Organomet Chem 625:148CrossRefGoogle Scholar
  129. 129.
    Frontera A et al (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds Coord. Chem Rev 384:107Google Scholar
  130. 130.
    Marin-Luna M et al (2016) Cooperativity in tetrel bonds. J Phys Chem A 120:648CrossRefGoogle Scholar
  131. 131.
    Scheiner S (2017) Systematic elucidation of factors that influence the strength of tetrel bonds. J Phys Chem A 121:5561CrossRefGoogle Scholar
  132. 132.
    Mani D, Arunan E (2013) The X-C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15:14377CrossRefGoogle Scholar
  133. 133.
    Gnanasekar SP, Arunan E (2019) Inter/intramolecular bonds in TH5+ (T = C/Si/Ge): H2 as tetrel bond acceptor and the uniqueness of carbon bonds. J Phys Chem A 123:1168CrossRefGoogle Scholar
  134. 134.
    Mani D, Arunan E (2014) The X−C···π (X = F, Cl, Br, CN) carbon bond. J Phys Chem A 118:10081CrossRefGoogle Scholar
  135. 135.
    Southern SA, Bryce DL (2015) NMR investigations of noncovalent carbon tetrel bonds. Computational assessment and initial experimental observation. J Phys Chem A 119:11891CrossRefGoogle Scholar
  136. 136.
    Mundlapati VR et al (2018) Noncovalent carbon-bonding interactions in proteins. Angew Chem Int Ed 57:16496CrossRefGoogle Scholar
  137. 137.
    Bauza A, Frontera A (2016) RCH3···O interactions in biological systems: are they trifurcated H-bonds or noncovalent carbon bonds? Crystals 6:26CrossRefGoogle Scholar
  138. 138.
    Taylor PG et al (2012) Further studies of fluoride ion entrapment in octasilsesquioxane cages; X-ray crystal structure studies and factors that affect their formation. Dalton Trans 41:2048CrossRefGoogle Scholar
  139. 139.
    Mahmoudi G et al (2017) Anion-driven tetrel bond-induced engineering of lead(II) architectures with N′-(1-(2-pyridyl)ethylidene)nicotinohydrazide: experimental and theoretical findings. Inorg Chem Front 4:171CrossRefGoogle Scholar
  140. 140.
    Thomas SP et al (2014) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem Commun 50:49CrossRefGoogle Scholar
  141. 141.
    Kost D et al (2007) Silicon rehybridization and molecular rearrangements in hypercoordinate silicon dichelates. Pure Appl. Chem. 79:1125CrossRefGoogle Scholar
  142. 142.
    Bauza A et al (2015) The bright future of unconventional σ/π–hole interactions. Chem Phys Chem 16:2496CrossRefGoogle Scholar
  143. 143.
    Pang X et al (2013) Co-crystallization turned on the phosphorescence of phenanthrene by C–Br···π halogen bonding, π–hole π bonding and other assisting interactions. CrystEngComm 15:2722CrossRefGoogle Scholar
  144. 144.
    Wang H et al (2015) Strength order and nature of the π–hole bond of cyanuric chloride and 1,3,5-triazine with halide. Phys Chem Chem Phys 17:20636CrossRefGoogle Scholar
  145. 145.
    Eskandari K, Zariny H (2010) Halogen bonding: a lump–hole interaction. Chem Phys Lett 492:9CrossRefGoogle Scholar
  146. 146.
    Gamez P et al (2007) Anion binding involving π-acidic heteroaromatic rings. Acc Chem Res 40:435CrossRefGoogle Scholar
  147. 147.
    Seth SK et al (2018) Quantitative analysis of weak non-covalent σ–hole and & π–hole interactions. In: Chopra D (ed) Understanding intermolecular interactions in the solid state: approaches and techniques, vol 285. Royal Society of Chemistry, LondonGoogle Scholar
  148. 148.
    Murray JS et al (2012) σ–holes, π–holes and electrostatically-driven interactions. J. Mol. Model. 18:541CrossRefGoogle Scholar
  149. 149.
    Esrafili MD, Nurazar R (2016) Chalcogen bonds formed through π–holes: SO3 complexes with nitrogen and phosphorus bases. Mol Phys 114:276CrossRefGoogle Scholar
  150. 150.
    Wang Y et al (2016) The mutual influence between π–hole pnicogen bonds and σ–hole halogen bonds in complexes of PO2Cl and XCN/C6H6 (X = F, Cl, Br). Struc. Chem. 27:1427CrossRefGoogle Scholar
  151. 151.
    Wei Y et al (2018) The π-tetrel bond and its influence on hydrogen bonding and proton transfer. Chem Phys Chem 19:736CrossRefGoogle Scholar
  152. 152.
    Cheng N et al (2014) The structures and properties of halogen bonds involving polyvalent halogen in complexes of FXOn (X = Cl, Br; n = 0–3)–CH3CN. New J Chem 38:1256CrossRefGoogle Scholar
  153. 153.
    Azofra LM et al (2014) Noncovalent interactions in dimers and trimers of SO3 and CO. Theor Chem Acc 133:1586CrossRefGoogle Scholar
  154. 154.
    Azofra LM et al (2014) Strongly bound noncovalent (SO3)n:H2CO complexes (n = 1, 2). Phys Chem Chem Phys 16:18974CrossRefGoogle Scholar
  155. 155.
    Bauza A et al (2016) π–hole interactions involving nitro compounds: directionality of nitrate esters. Cryst Growth Des 16:5520CrossRefGoogle Scholar
  156. 156.
    Andleeb H et al (2017) Synthesis and supramolecular self-assembly of thioxothiazolidinone derivatives driven by H-bonding and diverse π–hole interactions: a combined experimental and theoretical analysis. J Mol Struct 1139:209CrossRefGoogle Scholar
  157. 157.
    Zuho H et al (2014) Non-additivity between substitution and cooperative effects in enhancing hydrogen bonds. J Chem Phys 141:244305CrossRefGoogle Scholar
  158. 158.
    Rahim A et al (2017) Reciprocal carbonyl–carbonyl interactions in small molecules and proteins. Nat Commun 8:78CrossRefGoogle Scholar
  159. 159.
    Burgi HB et al (1974) Stereochemistry of reaction paths at carbonyl center. Tetrahedron 30:1563CrossRefGoogle Scholar
  160. 160.
    Shen S et al (2018) Insight into the π–hole···π-electrons tetrel bonds between F2ZO (Z = C, Si, Ge) and unsaturated hydrocarbons. Int J Quantum Chem 118:25521CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2019

Authors and Affiliations

  1. 1.Crystallography and Crystal Chemistry Laboratory, Department of ChemistryIndian Institute of Science Education and Research BhopalBhopalIndia

Personalised recommendations