Discrete Choice Models with Alternate Kernel Error Distributions
- 54 Downloads
Abstract
The multinomial logit (MNL) and probit (MNP) models dominated the literature on consumer behavior analysis, particularly in the transportation planning context where the focus is on future travel demand prediction as an aggregated outcome of individual traveler choices. While Gumbel kernel errors in the MNL model are unbounded and positively skewed, normal kernel errors in the MNP model are symmetric and unbounded. However, choice models with alternative kernel errors (beyond Gumbel and normal distributions) have piqued the interest of choice modelers for behavioral and prediction accuracy reasons. In addition, researchers found evidence in support of these alternate kernel errors in a wide variety of empirical contexts. This paper compiles a synthesis of the past literature that developed choices models with flexible kernel errors, including both parametric and semi-parametric methods and concludes with possible avenues for further research.
Keywords
Choice models Utility functions Logit Probit Kernel errors Travel choicesNotes
References
- 1.Alptekinoglu A, Semple JH (2016) The exponomial choice model: a new alternative for assortment and price optimization. Opera Res 64(1):79–93. https://doi.org/10.2139/ssrn.2210478 CrossRefGoogle Scholar
- 2.Alptekinoglu A, Semple JH (2018) Heteroscedastic exponomial choice. SSRN Electron J. https://doi.org/10.2139/ssrn.3232788 CrossRefGoogle Scholar
- 3.Beilner H, Jacobs F (1974) Probabilistic aspects of traffic assignment. In: Proceeedings of 5th International Symposium on the Theory of Traffic Flow and Transportation, Berkely, pp 183–194Google Scholar
- 4.Bhat CR (1995) A heteroscedastic extreme value model of intercity travel mode choice. Transp Res Part B. https://doi.org/10.1016/0191-2615(95)00015-6 CrossRefGoogle Scholar
- 5.Bhat CR (2011) The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2011.04.005 CrossRefGoogle Scholar
- 6.Bhat CR (2018) New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2018.01.011 CrossRefGoogle Scholar
- 7.Bhat CR, Astroza S, Hamdi AS (2017) A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2016.10.014 CrossRefGoogle Scholar
- 8.Bhat CR, Dubey SK (2014) A new estimation approach to integrate latent psychological constructs in choice modeling. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2014.04.011 CrossRefGoogle Scholar
- 9.Bhat CR, Dubey SK, Nagel K (2015) Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2015.04.005 CrossRefGoogle Scholar
- 10.Bhat CR, Sidharthan R (2012) A new approach to specify and estimate non-normally mixed multinomial probit models. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2012.02.007 CrossRefGoogle Scholar
- 11.Castillo E et al (2008) Closed form expressions for choice probabilities in the Weibull case. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2007.08.002 CrossRefGoogle Scholar
- 12.del Castillo J (2016) A class of RUM choice models that includes the model in which the utility has logistic distributed errors. Transp Res Part B Methodol 91:1–20. https://doi.org/10.1016/j.trb.2016.04.022 CrossRefGoogle Scholar
- 13.Chikaraishi M, Nakayama S (2016) Discrete choice models with q-product random utilities. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2016.08.013 CrossRefGoogle Scholar
- 14.Chorus CG, Arentze TA, Timmermans HJP (2008) A random regret-minimization model of travel choice. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2007.05.004 CrossRefGoogle Scholar
- 15.Daganzo C (1979) Multinomial probit: the theory and its application to demand forecasting. Academic Press, Elsevier, Amsterdam. https://doi.org/10.2307/2287751 CrossRefGoogle Scholar
- 16.Dubey S. et al. (2019) A generalized continuous-multinomial response model with a t-distributed error kernel, pp. 1–39. Available at: http://arxiv.org/abs/1904.08332. Accessed 15 June 2019
- 17.Eidsvik J et al (2014) Estimation and prediction in spatial models with block composite likelihoods. J Comput Graph Stat. https://doi.org/10.1080/10618600.2012.760460 CrossRefGoogle Scholar
- 18.Eluru N, Bhat CR, Hensher DA (2008) A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accid Anal Prev. https://doi.org/10.1016/j.aap.2007.11.010 CrossRefGoogle Scholar
- 19.Fosgerau M (2006) Investigating the distribution of the value of travel time savings. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2005.09.007 CrossRefGoogle Scholar
- 20.Fosgerau M, Bierlaire M (2009) Discrete choice models with multiplicative error terms. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2008.10.004 CrossRefGoogle Scholar
- 21.Geweke J, Keane M, Runkle D (2006) Alternative computational approaches to inference in the multinomial probit model. Rev Econ Stat. https://doi.org/10.2307/2109766 CrossRefGoogle Scholar
- 22.Greene W et al (2014) Heterogeneity in ordered choice models: a review with applications to self-assessed health. J Econ Surv. https://doi.org/10.1111/joes.12002 CrossRefGoogle Scholar
- 23.Greene WH, Hensher DA (2010) Modeling ordered choices: a primer. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511845062 CrossRefGoogle Scholar
- 24.Hausman JA, Wise DA (1978) A conditional probit model for qualitative choice: discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 46(2):403–426. https://doi.org/10.2307/1913909 CrossRefGoogle Scholar
- 25.Heagerty PJ, Lele SR (1998) A composite likelihood approach to binary spatial data. J Am Stat Assoc. https://doi.org/10.1080/01621459.1998.10473771 CrossRefGoogle Scholar
- 26.Hess S, Daly A, Batley R (2018) Revisiting consistency with random utility maximisation: theory and implications for practical work. Theory Decis. https://doi.org/10.1007/s11238-017-9651-7 CrossRefGoogle Scholar
- 27.Koppelman FS, Wen CH (2000) The paired combinatorial logit model: properties, estimation and application. Transp Res Part B Methodol. https://doi.org/10.1016/s0191-2615(99)00012-0 CrossRefGoogle Scholar
- 28.Li B (2011) The multinomial logit model revisited: a semi-parametric approach in discrete choice analysis. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2010.09.007 CrossRefGoogle Scholar
- 29.McCulloch R, Polson NG, Rossi PE (2000) A Bayesian analysis of the multinomial probit model with fully identified parameters. J Econ 99(1):173–193. https://doi.org/10.1016/S0304-4076(00)00034-8 CrossRefGoogle Scholar
- 30.McCulloch R, Rossi PE (1994) An exact likelihood analysis of the multinomial probit model. J Econ 64(1–2):207–240. https://doi.org/10.1016/0304-4076(94)90064-7 CrossRefGoogle Scholar
- 31.McFadden D (1973) Conditional logit analysis of qualitative choice behavior. In: Zaremb P (ed) Frontiers in econometrics. Academic Press, New York. https://doi.org/10.1108/eb028592 CrossRefGoogle Scholar
- 32.McFadden D, Train K (2002) Mixed MNL models for discrete response. J Appl Econo 15(5):447–470. https://doi.org/10.1002/1099-1255(200009/10)15:5%3c447:aid-jae570%3e3.3.co;2-t CrossRefGoogle Scholar
- 33.Paleti R (2018) Generalized multinomial probit model: accommodating constrained random parameters. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2018.10.019 CrossRefGoogle Scholar
- 34.Paleti R (2019) Multinomial probit model with truncated normal kernel errors: analysis of airline itinerary choices. Technical Paper, The Pennsylvania State University, University ParkGoogle Scholar
- 35.Paleti R, Pinjari A (2019) A new class of ordered response models with stochastic thresholds. Technical Paper, The Pennsylvania State University, University ParkGoogle Scholar
- 36.Patil PN et al (2017) Simulation evaluation of emerging estimation techniques for multinomial probit models. J Choice Model. https://doi.org/10.1016/j.jocm.2017.01.007 CrossRefGoogle Scholar
- 37.Small KA (1987) A discrete choice model for ordered alternatives. Econometrica 55(2):409. https://doi.org/10.2307/1913243 CrossRefGoogle Scholar
- 38.Train K (2003) Discrete choice methods with simulation, discrete choice methods with simulation. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511753930 CrossRefGoogle Scholar
- 39.Vij A, Walker JL (2016) How, when and why integrated choice and latent variable models are latently useful. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2016.04.021 CrossRefGoogle Scholar
- 40.Vovsha P (2007) Application of cross-nested logit model to mode choice in Tel Aviv, Israel, Metropolitan area. Transp Res Rec J Transp Res Board. https://doi.org/10.3141/1607-02 CrossRefGoogle Scholar
- 41.Wang K et al (2017) On the development of a semi-nonparametric generalized multinomial logit model for travel-related choices. PLoS One 12(10):e0186689CrossRefGoogle Scholar
- 42.Wen CH, Koppelman FS (2001) The generalized nested logit model. Transp Res Part B Methodol. https://doi.org/10.1016/s0191-2615(00)00045-x CrossRefGoogle Scholar
- 43.Ye X et al (2017) A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2017.10.009 CrossRefGoogle Scholar