Advertisement

Biomarker Responses to Polycyclic Aromatic Hydrocarbons in the Native Fish Ramnogaster arcuata, South America

  • Ana Carolina RondaEmail author
  • Ana Laura Oliva
  • Andrés Hugo Arias
  • Melina Mirta Orazi
  • Jorge Eduardo Marcovecchio
Research Paper

Abstract

Quantification of polycyclic aromatic hydrocarbons (PAHs) in Bahía Blanca Estuary (BBE, Argentina) fish samples (Ramnogaster arcuata) was performed to evaluate the environmental impact through anthropogenic activity. In addition, several metabolic enzyme activities (Aspartate aminotransferase—AST, Alanine aminotransferase—ALT, Lactate dehydrogenase—LDH, Creatine kinase—CK and, Alkaline phosphatase—ALP), protein content and lipid peroxidation as oxidative stress biomarker were analyzed in muscle and liver and related to tisular PAHs levels. Results showed low to moderate PAHs levels in R. arcuata muscle (9.34–41.25 ng/g, wet weight) with a marked predominance of two/three ringed compounds (phenanthrene > naphthalene > acenaphthene > acenaphthylene > fluoranthene). Fluoranthene, pyrene, benzo-[b]fluoranthene and benzo-[a]pyrene concentrations correlated positively with hepatic AST and ALT and negatively with muscular proteins and hepatic lipid peroxidation. 2-metil-naphthalene and acenaphthene levels correlated negatively with LDH in muscle and positively with lipid peroxidation in liver tissue. Correlation of PAHs with metabolic enzymes, proteins and lipid peroxidation indicated a differential metabolization and suggesting that hepatic AST/ALT could be used as PAHs biotransformation biomarkers and muscular LDH as a stress oxidation biomarker in R. arcuata. In addition, CK activity was suggested as a good index of muscular health. The obtained results highlighted the significance of using a set of integrated biomarkers to assess PAHs toxicity in fish inhabiting their natural ambient and confirm that R. arcuata could be used as a good bioindicator for marine areas.

Article Highlights

  • Ramogaster arcuata is proposed as a bioindicator.

  • AST and ALT serve as biomarkers of PAHs-induced liver biotransformation.

  • Muscular LDH in R. arcuata was in relation to LPO induced by PAHs.

  • CK in muscle could be used to verify the muscular health status of fishes.

Keywords

Polycyclic aromatic hydrocarbons Fish Biomarkers 

Notes

Acknowledgements

There is no actual or potential conflict of interest in relation to this article. This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Universidad Nacional del Sur, and the Agencia Nacional de Promoción científica y Tecnológica, Argentina. Préstamo BID PICT 2015-0709 granted to Andrés H. Arias. PGI 24ZQ12 granted to Andrés H. Arias. Préstamo BID PICT 2016-0540 granted to Ana C. Ronda. We thank Dr. Walter Melo for supplying the cartographic data and Ana C. Ronda is also deeply grateful to Dr Andrea L. Cazorla for providing assistance in the sampling design and information from her knowledge.

References

  1. Abarikwu SO, Essien EB, Iyede OO, John K, Mgbudom-Okah C (2017) Biomarkers of oxidative stress and health risk assessment of heavy metal contaminated aquatic and terrestrial organisms by oil extraction industry in Ogale, Nigeria. Chemosphere 185:412–422CrossRefGoogle Scholar
  2. Alkahem HF, Ahmed Z, Al-Akel AS, Shamsi MJK (1998) Toxicity bioassay and changes in haematological parameters of Oreochromis niloticus induced by trichlorfon. Arab Gulf J Sci Res 16(3):581–593Google Scholar
  3. Arias AH, Spetter CV, Freije RH, Marcovecchio JE (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary, Argentina. Estuar Coast Shelf Sci 85(1):67–81CrossRefGoogle Scholar
  4. Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Vélez G, Freije H, Marcovecchio J (2010a) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary, Argentina. Environ Monit Assess 160(1–4):301CrossRefGoogle Scholar
  5. Arias AH, Marcovecchio JE, Freije RH, Ponce Velez G, Vazquez Botello A (2010b) Sources analysis and equivalent toxicity assessment of PAHs impacted sediments in Bahia Blanca Estuary, Argentina. Hidrobiologica (Iztapalapa) 20(1):41–56Google Scholar
  6. Arias AH, Vazquez-Botello A, Diaz G, Marcovecchio JE (2013) Accumulation of polychlorinated biphenyls (PCBs) in navigation channels, harbors and industrial areas of the Bahia Blanca Estuary, Argentina. Int J Environ Res 7(4):925–936Google Scholar
  7. Asztalos B, Nemcsók JG, Benedeczky I, Gabriel R, Szabo A, Refaie OJ (1990) The effects of pesticides on some biochemical parameters of carp (Cyprinus carpio L.). Arch Environ Contam Toxicol 19(2):275–282CrossRefGoogle Scholar
  8. Ballantyne JS (2001) Amino acid metabolism. Fish Physiol 20:77–107CrossRefGoogle Scholar
  9. Banaee M (2012) Adverse effect of insecticides on various aspects of fish’s biology and physiology. In: Soloneski S, Larramendy M (eds) Insecticides-basic and other applications. InTech Open, London, pp 101–126Google Scholar
  10. Banaee M (2013) Physiological dysfunction in fish after insecticides exposure. In: Trdan S (ed) Insecticides-development of safer and more effective technologies. InTech Open, London, pp 103–143Google Scholar
  11. Banaee M, Ahmadi K (2011) Sub-lethal toxicity impacts of endosulfan on some biochemical parameters of the freshwater crayfish (Astacus leptodactylus). Res J Environ Sci 5(11):827CrossRefGoogle Scholar
  12. Banaee M, Sureda A, Zohiery F, Hagi BN, Garanzini DS (2014) Alterations in biochemical parameters of the freshwater fish, Alburnus mossulensis, exposed to sub-lethal concentrations of Fenpropathrin. Int J Aquat Biol 2(2):58–68Google Scholar
  13. Botté SE, Freije RH, Marcovecchio JE (2007) Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahía Blanca estuary tidal flats. Bull Environ Contam Toxicol 79(4):415–421CrossRefGoogle Scholar
  14. Brown JN (2002) Partitioning of chemical contaminants in urban stormwater (Doctoral dissertation, University of Otago)Google Scholar
  15. Cazorla AL, Sidorkewicj N (2009) Some biological parameters of Jenyns’ sprat Ramnogaster arcuata (Pisces: Clupeidae) in south-western Atlantic waters. Mar Biodivers Rec 2:127CrossRefGoogle Scholar
  16. dos Santos Carvalho C, Bernusso VA, de Araújo HSS, Espíndola ELG, Fernandes MN (2012) Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89(1):60–69CrossRefGoogle Scholar
  17. Duarte CA, Giarratano E, Amin OA, Comoglio LI (2011) Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Mar Pollut Bull 62(8):1895–1904CrossRefGoogle Scholar
  18. Duarte IA, Reis-Santos P, França S, Cabral H, Fonseca VF (2017) Biomarker responses to environmental contamination in estuaries: a comparative multi-taxa approach. Aquat Toxicol 189:31–41CrossRefGoogle Scholar
  19. Fern K, da Silva Neto GM, e Pinto JM, Salvo LM, Severino D, de Moraes JCT, da Silva JRMC (2016) Hepatic parameters of marine fish Rachycentron canadum (Linnaeus, 1766) exposed to sublethal concentrations of water-soluble fraction of petroleum. J Mar Biol OceanogrGoogle Scholar
  20. Ferreira M, Caetano M, Antunes P, Costa J, Gil O, Bandarra N, Reis-Henriques MA (2010) Assessment of contaminants and biomarkers of exposure in wild and farmed seabass. Ecotoxicol Environ Saf 73(4):579–588CrossRefGoogle Scholar
  21. Gabriel UU, George ADI (2005) Plasma enzymes in Clarias gariepinus exposed to chronic levels of round up (glyphosate). Environ Ecol 23(2):271–276Google Scholar
  22. Gabriel UU, Akinrotimi OA, Ariweriokuma VS (2012) Changes in metabolic enzymes activities in selected organs and tissue of Clarias gariepinus exposed to cypermethrin. J Environ Eng Technol 1:13–19Google Scholar
  23. IARC (2010) International agency for research on cancer. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol 92. http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf. Accessed 1 Nov 2018
  24. Ji Y, Lu GH, Wang C, Zhang J (2012) Biochemical responses of freshwater fish Carassius auratus to polycyclic aromatic hydrocarbons and pesticides. Water Sci Eng 5(2):145–154Google Scholar
  25. Jimenez BD, Cirmo CP, McCarthy JF (1987) Effects of feeding and temperature on uptake, elimination and metabolism of benzo (a) pyrene in the bluegill sunfish (Lepomis macrochirus). Aquat Toxicol 10(1):41–57CrossRefGoogle Scholar
  26. Johnson-Restrepo B, Olivero-Verbel J, Lu S, Guette-Fernández J, Baldiris-Avila R, O’Byrne-Hoyos I, Aldous MK, Addink R, Kannan K (2008) Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut 151(3):452–459CrossRefGoogle Scholar
  27. Jones RP, Clarke JU (2005) Analytical chemistry detection limits and the evaluation of dredged sediment. ERDC/TN EEDP-04-36. U.S. Army Engineer Research and Development Center, Vicksburg, MSGoogle Scholar
  28. Kennedy CJ, Gill KA, Walsh PJ (1989) Thermal modulation of benzo [a] pyrene metabolism by the gulf toadfish, Opsanus beta. Aquat Toxicol 15(4):331–343CrossRefGoogle Scholar
  29. Knox WE, Greengard O (1965) The regulation of some enzymes of nitrogen metabolism an introduction to enzyme physiology. Adv Enzyme Regul 3:247–313CrossRefGoogle Scholar
  30. Kori-Siakpere O, Ogbe MG, Ikomi RB (2011) Variation in lactate dehydrogenase and creatine kinase activities in the plasma of the African catfish: Clarias gariepinus (Burchell, 1822) exposed to sublethal concentrations of potassium permanganate. Ann Biol Res 2(2):19–25Google Scholar
  31. Kumar N, Krishnani KK, Meena KK, Gupta SK, Singh NP (2017) Oxidative and cellular metabolic stress of Oreochromis mossambicus as biomarkers indicators of trace element contaminants. Chemosphere 171:265–274CrossRefGoogle Scholar
  32. Kumari K, Ranjan N, Sinha RC (2011) Multiple biomarker response in the fish, Labeo rohita due to hexavalent chromium. In: Proceedings of the 2nd international conference on biotechnology and food science (IPCBEE’11), vol 7. IACSIT PressGoogle Scholar
  33. La Colla NS, Negrin VL, Marcovecchio JE, Botté SE (2015) Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuar Coast Shelf Sci 166:45–55CrossRefGoogle Scholar
  34. Lee HK, Maita M, Fukuda Y, Okamoto N (1999) Application of creatine kinase isoenzymes for detecting pathophysiological changes in yellowtail infected with Lactococcus garvieae. Fish Pathol 34(2):53–57CrossRefGoogle Scholar
  35. Li KB, Jiang L, Pan HJ, Huang ZB, Shi CB, Wu SQ (2004) The LDH and GDH Isoenzymes Studies on RR-B Strain of Swordtail Fish (Xiphophorus helleri). Chin J Lab Anim Sci 5:002Google Scholar
  36. Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Kolarova J, Randák T (2011) Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J Anim Sci 56(2):61–69CrossRefGoogle Scholar
  37. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42(8):656–666CrossRefGoogle Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  39. Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165Google Scholar
  40. Muralidharan L (2014) Chronic toxic impacts of fenthion on the profiles of enzymes in the freshwater fish Cyprinus carpio (Linn). Int J Fish Aquat Stud 1:51–56Google Scholar
  41. Niimi AJ, Dookhran GP (1989) Dietary absorption efficiencies and elimination rates of polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Environ Toxicol Chem 8(8):719–722CrossRefGoogle Scholar
  42. Niimi AJ, Palazzo V (1986) Biological half-lives of eight polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Water Res 20(4):503–507CrossRefGoogle Scholar
  43. Obomanu FG, Gabriel UU, Edori OS, Emetonjor JN (2009) Biomarker enzymes in muscle tissue and organs of Clarias gariepinus after intramuscular injection with aqueous extracts of Lepidagathis alopecuroides leaves. J Med Plants Res 3(12):995–1001Google Scholar
  44. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  45. Oliva AL, Quintas PY, La Colla NS, Arias AH, Marcovecchio JE (2015) Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary, Argentina. Arch Environ Contam Toxicol 69(2):163–172CrossRefGoogle Scholar
  46. Osioma E, Akanji MA, Arise RO (2013) Biotransformation and oxidative stress markers in clarias gariepinus from petroleum exploration area in Delta state, Nigeria. World Appl Sci J 26:508–514Google Scholar
  47. Osman AG, Abd-El–Baset M, AbuelFadl KY, GadEl-Rab AG (2010) Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Nat Sci 2(11):1302Google Scholar
  48. Otitoloju A, Olagoke O (2011) Lipid peroxidation and antioxidant defense enzymes in Clarias gariepinus as useful biomarkers for monitoring exposure to polycyclic aromatic hydrocarbons. Environ Monit Assess 182(1–4):205–213CrossRefGoogle Scholar
  49. Pellerin-Massicotte J (1997) Influence of elevated temperature and air-exposure on MDA levels and catalase activities in digestive glands of the blue mussel (Mytilus edulis L.). J Rech Océanogr 22:91–98Google Scholar
  50. Pelletier D, Guderley H, Dutil JD (1993) Effects of growth rate, temperature, season, and body size on glycolytic enzyme activities in the white muscle of Atlantic cod (Gadus morhua). J Exp Zool Part A Ecol Genet Physiol 265(5):477–487CrossRefGoogle Scholar
  51. Pikul J, Leszczynski DE (1986) Butylated hydroxytoluene addition improves the thiobarbituric acid assay for malonaldehyde from chicken plasma fat. Mol Nutr Food Res 30(7):673–678Google Scholar
  52. Polizzi KM, Kylilis N, Lai HE, Freemont PS (2014) Detecting protein biomarkers using engineered biosensors based on synthetic biology principles. In: Abstracts of papers of the American chemical society, vol 248. 1155 16th st, NW, Washington, DC 20036 USA: Amer Chemical SocGoogle Scholar
  53. Rao JV (2006) Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere 65(10):1814–1820CrossRefGoogle Scholar
  54. Richardson BJ, Mak E, De Luca-Abbott SB, Martin M, McClellan K, Lam PK (2008) Antioxidant responses to polycyclic aromatic hydrocarbons and organochlorine pesticides in green-lipped mussels (Perna viridis): do mussels “integrate” biomarker responses? Mar Pollut Bull 57(6):503–514CrossRefGoogle Scholar
  55. Samanta P, Pal S, Mukherjee AK, Ghosh AR (2014) Evaluation of metabolic enzymes in response to Excel Mera 71, a glyphosate-based herbicide, and recovery pattern in freshwater teleostean fishes. BioMed Res IntGoogle Scholar
  56. Sarhadizadeh N, Afkhami M, Ehsanpour M, Bastami KD (2014) Heavy metal pollution monitoring in the northern coast of Hormuz Strait (Persian Gulf): plasma enzyme variations in Periophthalmus waltoni. Comp Clin Pathol 23(4):1063–1067CrossRefGoogle Scholar
  57. Scarcia P, Calamante G, de la Torre F (2012) Responses of biomarkers of a standardized (Cyprinus carpio) and a native (Pimelodella laticeps) fish species after in situ exposure in a periurban zone of Luján river (Argentina). Environ Toxicol 29:545–557CrossRefGoogle Scholar
  58. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21(4):257–276CrossRefGoogle Scholar
  59. Shirmohammadi M, Salamat N, Ronagh MT, Movahedinia A, Hamidian G (2017) Effect of phenanthrene on the tissue structure of liver and aminotransferase enzymes in Yellowfin Seabream (Acanthopagrus latus). Iran J Toxicol 11(4):33–41Google Scholar
  60. Siva Prasada Rao S (1980) Studies on some aspects of metabolic changes with emphasis on carbohydrate utility in the cell free systems of the fresh water teleost, Tilapia mossambica (Peters) under methylparathion exposure (Doctoral dissertation, Ph. D. Thesis, Sri Venkateswara University, Tirupati)Google Scholar
  61. Soares-Gomes A, Neves RL, Aucélio R, Van Der Ven PH, Pitombo FB, Mendes CL, Ziolli RL (2010) Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay, Southeast Brazil. Mar Pollut Bull 60(8):1359–1363CrossRefGoogle Scholar
  62. Soclo HH, Budzinski H, Garrigues P, Matsuzawa S (2008) Biota accumulation of polycyclic aromatic hydrocarbons in Benin coastal waters. Polycycl Aromat Compd 28(2):112–127CrossRefGoogle Scholar
  63. Streit B (1998) Bioaccumulation of contaminants in fish. In: Braunbeck T, Hinton DE, Streit B (eds) Fish ecotoxicology. Birkhäuser Basel, Basel, pp 353–387CrossRefGoogle Scholar
  64. Tiwari S, Singh A (2004) Piscicidal activity of alcoholic extract of Nerium indicum leaf and their biochemical stress response on fish metabolism. Afr J Tradit Complement Altern Med 1(1):15–29CrossRefGoogle Scholar
  65. Tkachenko H, Kurhaluk N, Grudniewska J (2013) Effects of chloramine-T exposure on oxidative stress biomarkers and liver biochemistry of rainbow trout, Oncorhynchus mykiss (Walbaum), brown trout, Salmo trutta (L.), and grayling, Thymallus thymallus (L.). Arch Polish Fish 21(1):41–51Google Scholar
  66. UNEP (1993) United Nations Environment Programme. UNEP/FAO/IOC/IAEA. Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference Methods For Marine Pollution Studies No. 6Google Scholar
  67. USEPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories. Risk assessment and fish consumption limits, 3rd edn. Office of Water, Washington DCGoogle Scholar
  68. Van Waarde A, Henegouwen MDWVB (1982) Nitrogen metabolism in goldfish, Carassius auratus (L.). Pathway of aerobic and anaerobic glutamate oxidation in goldfish liver and muscle mitochondria. Comp Biochem Physiol Part B Comp Biochem 72(1):133–136CrossRefGoogle Scholar
  69. Varanasi U, Brown DW, Hom T, Burrows DG, Sloan CA, Field LJ, Stein JE, Tilbury KL, McCain BB, Chan S (1993) Survey of Alaskan subsistence fish, marine mammal, and invertebrate samples collected 1989–91 for exposure to oil spilledfrom the Exxon Valdez, vol 1. NOAA Technical Memorandum NMFS-NWFSC-12Google Scholar
  70. Vasanth S, Ganesh A, Vijayakumar TS, Karthikeyeni S, Manimegalai M, Subramanian P (2012) Assessment of anthracene on hepatic and antioxidant enzyme activities in Labeo rohita (Hamilton, 1822). Int J Pharm Life Sci 3(5):1696–1704Google Scholar
  71. Wróblewski F (1958) The clinical significance of alterations in transaminase activities of serum and other body fluids. In: Makowski G (ed) Advances in clinical chemistry, vol 1. Elsevier, Amsterdam, pp 313–351Google Scholar

Copyright information

© University of Tehran 2018

Authors and Affiliations

  • Ana Carolina Ronda
    • 1
    • 2
    Email author
  • Ana Laura Oliva
    • 1
  • Andrés Hugo Arias
    • 1
    • 3
  • Melina Mirta Orazi
    • 1
  • Jorge Eduardo Marcovecchio
    • 1
    • 4
    • 5
    • 6
  1. 1.Instituto Argentino de Oceanografía (IADO, CONICET/UNS)Bahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Departamento de Química, Area III, Química AnalíticaUniversidad Nacional del SurBahía BlancaArgentina
  4. 4.Universidad de la Fraternidad de Agrupaciones Santo Tomás de AquinoMar del PlataArgentina
  5. 5.Universidad Tecnológica Nacional, FRBBBahía BlancaArgentina
  6. 6.Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN)Buenos AiresArgentina

Personalised recommendations