Effective Kernel-Based Fuzzy Clustering Systems in Analyzing Cancer Database

  • S. R. KannanEmail author
  • M. Siva
  • S. Ramathilagam
  • R. Devi
Original Article


The greatest challenge in high-dimensional medical cancer databases is to differentiate the available subtypes due to uncertainty associated with the objects of the database. Recently, mathematical algorithm-based diagnosing system plays an increasingly important role in analyzing the high-dimensional medical cancer databases. Particularly, fuzzy clustering technique has taken a major role in clustering medical cancer databases. The fuzzy clustering techniques are not robust with high-dimensional databases which have more similar objects. Therefore, this paper tries to propose robust fuzzy clustering algorithms for effective analysis of high-dimensional medical database. This paper introduces the objective function of proposed robust fuzzy clustering techniques by incorporating Laplacian kernel-induced distance, Canberra distance, possibilistic memberships, and fuzzy memberships. The proposed methods have been implemented with high-dimensional breast cancer database containing three subclasses which are the leading causes of cancer deaths in the world. Benchmark datasets have been used to evaluate the performance of the proposed methods, and this paper has shown the effectiveness of the proposed methods through clustering accuracy.


Clustering Fuzzy c-means Kernel distance Cancer data 



This work was financially supported by DST India and MOST Israel.


  1. 1.
    Y. Häme, M. Pollari, Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med. Image Anal. 16, 140–149 (2012)CrossRefGoogle Scholar
  2. 2.
    Ramathilagam et al., Extended fuzzy c-means: An analyzing data clustering problems. Clust Comput (Springer) 16(3), 389–406Google Scholar
  3. 3.
    E. Binaghi et al., Fuzzy set-based accuracy assessment of soft classification. Pattern Recogn. Lett. 6, 935–948 (1999)CrossRefGoogle Scholar
  4. 4.
    C.-H. Wang, Outlier identification and market segmentation using kernel-based clustering techniques. Expert Syst. Appl. 36, 3744–3750 (2009)CrossRefGoogle Scholar
  5. 5.
    C.-H. Lai et al, Oncogenes and subtypes of diffuse large B-cell lymphoma discoveries from microarray database. JCIS, Atlantis Press (2006)Google Scholar
  6. 6.
    J.R. Krishnaiah et al., Data analysis of bio-medical data mining using enhanced hierarchical agglomerative clustering. Int. J. Eng. Innov. Technol. (IJEIT) 2(3), 43–49 (2012)Google Scholar
  7. 7.
    S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, G.M. Church, Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999)CrossRefGoogle Scholar
  8. 8.
    B. Liu, C. Wan, L.P. Wang, An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans. Nano-Bioscience 5(2), 110–114 (2006)CrossRefGoogle Scholar
  9. 9.
    M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863 (1998)CrossRefGoogle Scholar
  10. 10.
    H. Yang, N.J. Pizzi, Biomedical data classification using hierarchical clustering. Proc IEEE Canadian Conf Elect Comput Eng, Niagara Falls (2004)Google Scholar
  11. 11.
    J. Lee, D. Lee, Dynamic characterization of cluster structures for robust and inductive support vector clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1869–1874 (2006)CrossRefGoogle Scholar
  12. 12.
    J.A. Castellanos-Garzón, C.A. García, P. Novais, F. Díaz, A visual analytics framework for cluster analysis of DNA microarray data. Expert Syst. Appl. 40(2), 758–774 (2013)CrossRefGoogle Scholar
  13. 13.
    Berks et al. Fuzzy clustering—a versatile mean to explore medical database, ESIT2000, Aachen, GermanyGoogle Scholar
  14. 14.
    D. Karaboga et al., Fuzzy clustering with artificial bee colony algorithm. Sci. Res. Essays Acad. J. 5(14), 1899–1902 (2010)Google Scholar
  15. 15.
    F. Chu, W. Xie, L.P. Wang, Gene selection and cancer classification using a fuzzy neural network. Proc. North Am. Fuzzy Inf. Process. Conference 2, 555–559 (2004)Google Scholar
  16. 16.
    F. Masulli et al., A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artif. Intell. Med. 16, 129–147 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Jezewski, An application of modified fuzzy clustering to medical data classification. J. Med. Inform. Technol. 17, 51–57 (2011)Google Scholar
  18. 18.
    N.S. Mishra, S. Ghosh, A. Ghosh, Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images. Appl. Soft Comput. 12, 2683–2692 (2012)CrossRefGoogle Scholar
  19. 19.
    O. Ossama, H.M.O. Mokhtar, M.E. El-Sharkawi, An extended k-means technique for clustering moving objects. Egypt Inform. J. 12, 45–51 (2011)CrossRefGoogle Scholar
  20. 20.
    Liu et al. Performance research of Gaussian function weighted fuzzy C-means algorithm. In S. J. Maybank, M. Ding, F. Wahl, Y. Zhu (Eds.), Pattern recognition and computer vision. Proceedings of SPIE (Vol. 6788, pp. 67881Q-1-67881Q-7)Google Scholar
  21. 21.
    F. De Smet, J. Mathys, K. Marchal, G. Thijs, B. de Moor, Y. Moreau, Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18, 735–746 (2002)CrossRefGoogle Scholar
  22. 22.
    P. Tamayo et al., Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. U S A. 96(6), 2907 (1999)CrossRefGoogle Scholar
  23. 23.
    Y.-L. Huang, J.-H. Chen, W.-C. Shen, Computer-aided diagnosis of liver tumors in nonenhanced CT images. J. Med. Phys. 9, 141–150 (2004)Google Scholar
  24. 24.
    J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms (Plenum Press, New York, 1981)CrossRefGoogle Scholar
  25. 25.
    S.C. Chen, D.Q. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34, 1907–1916 (2004)CrossRefGoogle Scholar
  26. 26.
    E.A. Zanaty, S. Aljahdali, N. Debnath, A kernelized fuzzy c-means algorithm for automatic magnetic resonance image segmentation. J. Comput. Methods Sci. Eng. 9, 123–136 (2009)zbMATHGoogle Scholar
  27. 27.
    B. Liang et al., An initialization method to simultaneously find initial cluster centers and the number of clusters for clustering categorical data. Knowl.-Based Syst. 24, 785–795 (2011)CrossRefGoogle Scholar
  28. 28.
    UCI Benchmark repository: a huge collection of artificial and real world data sets, University of California Irvine. D. Vanisri, C. Loganathan, An efficient fuzzy possibilistic C-means with penalized and compensated constraints, Glob. J. Comput. Sci. Technol, Volume 11 Issue Version 1.0 March 2011Google Scholar
  29. 29.
    N.R. Pal et al., A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    R.G. Congalton, K. Green, Assessing the accuracy of remotely sensed data: principles and practices (Lewis Publishers, USA, 1992)Google Scholar
  31. 31.
    R.S. Lunetta et al., Remote sensing and geographic information system data integration: error sources and research issues. Photogramm. Eng. Remote Sens. 57, 677–687 (1991)Google Scholar
  32. 32.
    P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  33. 33.
    S. Mishra et al., A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol. 4, 802–806 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. R. Kannan
    • 1
    Email author
  • M. Siva
    • 1
  • S. Ramathilagam
    • 2
  • R. Devi
    • 3
  1. 1.Pondicherry UniversityPuducherryIndia
  2. 2.Periyar Government Arts CollegeCuddaloreIndia
  3. 3.Pachaiyappa’s CollegeChennaiIndia

Personalised recommendations