Advertisement

Journal of Healthcare Informatics Research

, Volume 3, Issue 2, pp 184–199 | Cite as

An Integrated Approach to Recognize Potential Protective Effects of Culinary Herbs Against Chronic Diseases

  • Suganya Chandrababu
  • Dhundy BastolaEmail author
Research Article
Part of the following topical collections:
  1. Special Issue on Healthcare Knowledge Discovery and Management

Abstract

Secondary metabolites in plants have been of interest to humans for their wide variety of functions, including its use as dye, drugs, or perfumes. They are increasingly recognized as potential sources of new natural drugs and antibiotics. More recently, gut-associated microbes have been found to fulfill important functions in human health. However, our knowledge about the impact of secondary metabolites from culinary herbs on gut microbiome is limited. The present study was conducted to access the availability of computational resources relating to secondary metabolites and bioactive compounds in culinary herbs. A graph-based database HerbMicrobeDataBase (HMDB) was developed using Neo4j framework. It integrates knowledge from key biological entities associated in maintaining gut health and provides efficient storage/retrieval and graphical presentation of botanical, biochemical, and pharmacological data for culinary herbs and the human microbiome. We demonstrate the utility of this resource in understanding the molecular mechanism of metabolite production as well as their therapeutic or toxicological effects on gut microbes.

Keywords

Graph database Culinary herbs Human microbiome Phytochemicals Secondary metabolites Neo4j 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Fraenkel GS (1959) The raison dEtre of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129(3361):1466–1470.  https://doi.org/10.1126/science.129.3361.1466 CrossRefGoogle Scholar
  2. 2.
    Xutian S, Louise W (2009) New exploration and understanding of traditional Chinese medicine. Am J Chin Med 37:411–426CrossRefGoogle Scholar
  3. 3.
    Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–69CrossRefGoogle Scholar
  4. 4.
    Kang K, Fong WP (2010) Antifungal activity of Baicalein against Candida krusei does not involve apoptosis. Mycopathologia 170:391–396CrossRefGoogle Scholar
  5. 5.
    Samuelsson G, Bohlin L (2009) Drugs of natural origin, 6th edn. Apotekarsocieteten, SwedenGoogle Scholar
  6. 6.
    Gill SR, Pop M, Deboy RT, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359CrossRefGoogle Scholar
  7. 7.
    James V, Relman D (2006) How bacterial communities expand functional repertoires. PLoS Biology 4(12):e430CrossRefGoogle Scholar
  8. 8.
    Ruseler-Van Embden JG et al (1994) Pouchitis: result of microbial imbalance?. Gut 35(5):658–664.  https://doi.org/10.1136/gut.35.5.658 CrossRefGoogle Scholar
  9. 9.
    Schachter SC (2008) Complementary and alternative medical therapies. Curr Opin Neurol 21(2):184–189.  https://doi.org/10.1097/wco.0b013e3282f47918 CrossRefGoogle Scholar
  10. 10.
    Chandrababu S, Bastola DR (2018) Comparative analysis of graph and relational databases using herbmicrobeDB. 2018 IEEE International Conference on Healthcare Informatics Workshop (ICHI-w). IEEEGoogle Scholar
  11. 11.
    Batra S, Tyagi C (2012) Comparative analysis of relational and graph databases. Int J Soft Comput Eng (IJSCE) 2.2:509–512Google Scholar
  12. 12.
    Miller JJ (2013) Graph database applications and concepts with Neo4j. Proceedings of the Southern Association for Information Systems Conference, vol 2324, AtlantaGoogle Scholar
  13. 13.
    Bolton EE et al (2008) PubChem: integrated platform of small molecules and biological activities. Annual Reports in Computational Chemistry 4:217–241Google Scholar
  14. 14.
    Barthelmes J et al (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Research, vol 35, no. Database, Mar.  https://doi.org/10.1093/nar/gkl972
  15. 15.
    Kanehisa M (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30.  https://doi.org/10.1093/nar/28.1.27 CrossRefGoogle Scholar
  16. 16.
    Caspi R et al (2007) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research, vol 36, no. Database.  https://doi.org/10.1093/nar/gkm900
  17. 17.
    Wishart DS et al (2006) Drugbank: a comprehensive resource for in silico drug discovery and exploration—nucleic acids research — Oxford Academic. OUP Academic, Oxford University Press, 1 Jan.  https://doi.org/10.1093/nar/gkj067
  18. 18.
    Holmes E et al (2011) Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol 19(7):349–359.  https://doi.org/10.1016/j.tim.2011.05.006 CrossRefGoogle Scholar
  19. 19.
    Putignani L et al (2016) Gut microbiota dysbiosis as risk and premorbid factors of IBD and IBS along the childhood–adulthood transition. Inflamm Bowel Dis 22 (2):487–504.  https://doi.org/10.1097/mib.0000000000000602 CrossRefGoogle Scholar
  20. 20.
    Lin HV et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7(4):2012.  https://doi.org/10.1371/journal.pone.0035240 Google Scholar
  21. 21.
    Harig JM et al (1989) Treatment of diversion colitis with short-chain-fatty acid irrigation. England J Med 320 (1):23–28.  https://doi.org/10.1056/nejm198901053200105 CrossRefGoogle Scholar
  22. 22.
    Cummings John H., et al. (2004) Physiological and clinical aspects of short-chain fatty acids. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Nicholson JK et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262– 1267.  https://doi.org/10.1126/science.1223813 CrossRefGoogle Scholar
  24. 24.
    Alvarez-Sieiro P et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951.  https://doi.org/10.1007/s00253-016-7343-9 CrossRefGoogle Scholar
  25. 25.
    Ridlon JM et al (2005) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259.  https://doi.org/10.1194/jlr.r500013-jlr200 CrossRefGoogle Scholar
  26. 26.
    Begley M et al (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738.  https://doi.org/10.1128/aem.72.3.1729-1738.2006 CrossRefGoogle Scholar
  27. 27.
    Bortolini O et al (1997) Biotransformations on steroid nucleus of bile acids. Steroids 62(8-9):564–577.  https://doi.org/10.1016/s0039-128x(97)00043-3 CrossRefGoogle Scholar
  28. 28.
    De Boever P et al (2000) Protective effect of the bile salt hydrolase-active Lactobacillus Reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol 53 (6):709–714.  https://doi.org/10.1007/s002530000330 CrossRefGoogle Scholar
  29. 29.
    Couteau D et al (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90 (6):873–881.  https://doi.org/10.1046/j.1365-2672.2001.01316.x CrossRefGoogle Scholar
  30. 30.
    De Weirdt R et al (2010) Human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol Ecol 74(3):601–611.  https://doi.org/10.1111/j.1574-6941.2010.00974.x CrossRefGoogle Scholar
  31. 31.
    Del Chierico F et al (2012) Early-life gut microbiota under physiological and pathological conditions: the central role of combined meta-omics-based approaches. J Proteomics 75(15):4580–4587.  https://doi.org/10.1016/j.jprot.2012.02.018 CrossRefGoogle Scholar
  32. 32.
    Kumar S et al (2010) Patients with irritable bowel syndrome exhale more hydrogen than healthy subjects in fasting state. J Neurogastroenterol Motil 16(3):299–305.  https://doi.org/10.5056/jnm.2010.16.3.299 CrossRefGoogle Scholar
  33. 33.
    Zhang G, Bai H, Zhang H, Dean C, Wu Q, Li J et al (2011) Neuropeptide exocytos is involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69:523–535.  https://doi.org/10.1016/j.neuron.2010.12.036 CrossRefGoogle Scholar
  34. 34.
    Francavilla R et al (2012) Effect of lactose on gut microbiota and metabolome of infants with cow’s milk allergy. Pediatr Allergy Immunol 23 (5):420–427.  https://doi.org/10.1111/j.1399-3038.2012.01286.x CrossRefGoogle Scholar
  35. 35.
    Gall FF, Le G et al (2011) Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research 10(9):4208–4218.  https://doi.org/10.1021/pr2003598

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Interdisciplinary InformaticsUniversity of Nebraska at OmahaOmahaUSA

Personalised recommendations