Visual Voltammogram at an Array of Closed Bipolar Electrodes in a Ladder Configuration

  • Janis S. Borchers
  • Olga Riusech
  • Eric Rasmussen
  • Robbyn K. AnandEmail author
Original Paper


In this paper, we report a method for obtaining a visual voltammogram at a linear array of closed wireless bipolar electrodes (BPEs). This advancement is significant, because the visual voltammogram captures the entire current–potential (iE) relationship of a faradaic reaction in one image and is continuously generated over time. Therefore, we anticipate that this method will allow monitoring in redox systems that change over time. Further, the use of a linear array of BPEs eliminates the need to use a potentiostat and can be carried out with a simple DC power supply. Our experimental and numerical results demonstrate that the visual voltammogram is similar to a linear sweep voltammogram and therefore, information about the faradaic process can be extracted from the wave position, height, and shape.


Bipolar electrochemistry Voltammetry Electrogenerated chemiluminescence Visual voltammogram Flow cell 



The authors thank the Society of Analytical Chemists of Pittsburgh for a Starter Grant. JSB acknowledges partial support from the Iowa State University Center for Catalysis. The authors also gratefully thank Min Li, Kira Rahn, and Beatrise Berzina for both technical support and assistance in preparing the manuscript for publication.

Supplementary material

41664_2019_98_MOESM1_ESM.docx (54 kb)
Supplementary material 1 (DOCX 53 kb)


  1. 1.
    Cox JT, Guerrette JP, Zhang B. Steady-state voltammetry of a microelectrode in a closed bipolar cell. Anal Chem. 2012;84:8797–804.CrossRefGoogle Scholar
  2. 2.
    Chang BY, Mavré F, Chow KF, Crooks JA, Crooks RM. Snapshot voltammetry using a triangular bipolar. Anal Chem. 2010;82:5317–22.CrossRefGoogle Scholar
  3. 3.
    Klett O, Nyholm L. Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Anal Chem. 2003;75(6):1245–50.CrossRefGoogle Scholar
  4. 4.
    Ordeig O, Godino N, del Campo J, Muñoz FX, Nikolajeff F, Nyholm L. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal Chem. 2008;80(10):3622–32.CrossRefGoogle Scholar
  5. 5.
    Fosdick SE, Knust KN, Scida K, Crooks RM. Bipolar electrochemistry. Angew Chem Int Ed. 2013;52:10438–56.CrossRefGoogle Scholar
  6. 6.
    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Bipolar electrochemistry: from materials science to motion and beyond. Acc Chem Res. 2013;46:2513–23.CrossRefGoogle Scholar
  7. 7.
    Mavré F, Anand RK, Laws DR, Chow KF, Chang BY, Crooks JA, Crooks RM. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal Chem. 2010;82:8766–74.CrossRefGoogle Scholar
  8. 8.
    Fosdick SE, Crooks RM. Bipolar electrodes for rapid screening of electrocatalysts. J Am Chem Soc. 2012;134:863–6.CrossRefGoogle Scholar
  9. 9.
    Fosdick SE, Berglund SP, Mullins CB, Crooks RM. Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem. 2013;85:2493–9.CrossRefGoogle Scholar
  10. 10.
    Singh BK, Hillier AC. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem. 2006;78:2009–18.CrossRefGoogle Scholar
  11. 11.
    Jayaraman S, Hillier AC. Construction and reactivity mapping of a platinum catalyst gradient using the scanning electrochemical microscope. Langmuir. 2001;17:7857–64.CrossRefGoogle Scholar
  12. 12.
    Jambunathan K, Jayaraman S, Hillier AC. A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited PtxRuy. Langmuir. 2004;20:1856–63.CrossRefGoogle Scholar
  13. 13.
    Mougin K, Ham AS, Lawrence MB, Fernandez EJ, Hillier AC. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Langmuir. 2005;21:4809–12.CrossRefGoogle Scholar
  14. 14.
    Singh BK, Hillier AC. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem. 2006;78:2009–18.CrossRefGoogle Scholar
  15. 15.
    Singh BK, Hillier AC. Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. Anal Chem. 2008;80:3803–10.CrossRefGoogle Scholar
  16. 16.
    Chow KF, Mavré F, Crooks RM. Wireless electrochemical DNA microarray sensor. J Am Chem Soc. 2008;130:7544–5.CrossRefGoogle Scholar
  17. 17.
    Chow KF, Mavré F, Crooks JA, Chang BY, Crooks RM. A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc. 2009;131:8364–5.CrossRefGoogle Scholar
  18. 18.
    Guerrette JP, Percival SJ, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J Am Chem Soc. 2013;135:855–61.CrossRefGoogle Scholar
  19. 19.
    Xu W, Fu K, Ma C, Bohn PW. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst. 2016;141:6018–24.CrossRefGoogle Scholar
  20. 20.
    Xu W, Fu K, Bohn PW. Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling. ACS Sens. 2017;2:1020–6.CrossRefGoogle Scholar
  21. 21.
    Zhang X, Shang C, Gu W, Xia Y, Li J, Wang E. A renewable display platform based on the bipolar electrochromic electrode. ChemElectroChem. 2016;3:383–6.CrossRefGoogle Scholar
  22. 22.
    Gupta B, Goudeau B, Kuhn A. Wireless electrochemical actuation of conducting polymers. Angew Chem Int Ed Engl. 2017;56:14183–6.CrossRefGoogle Scholar
  23. 23.
    Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar electrodes with 100% current efficiency for sensors. ACS Sens. 2017;2:320–6.CrossRefGoogle Scholar
  24. 24.
    Lin X, Zheng L, Gao G, Chi Y, Chen G. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem. 2012;84:7700–7.CrossRefGoogle Scholar
  25. 25.
    Mavré F, Chow KF, Sheridan E, Chang BY, Crooks JA, Crooks RM. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal Chem. 2009;81:6218–25.CrossRefGoogle Scholar
  26. 26.
    McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002;35:491–9.CrossRefGoogle Scholar
  27. 27.
    Bitziou E, Snowden ME, Joseph MB, Leigh SJ, Covington JA, MacPherson JV, Unwin PR. Dual electrode micro-channel flow cell for redox titrations: kinetics and analysis of homogeneous ascorbic acid oxidation. J Electroanal Chem. 2013;692:72–9.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2019

Authors and Affiliations

  1. 1.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations