Prediction for Multi-Steady-State Solutions in the Thermal-Coupled Distillation

  • Song Erwei
  • Qi Lijuan
  • Wang ErqiangEmail author
Original Research Paper


Multiple steady-state solution (MSS) phenomena not only have a special effect on the design and optimization of distillation separation process, but also can provide some instructive information during the actual production. Thus, it is necessary to find out an easy and effective method to predict whether there exist multiple steady-state solutions or not. Based on previous researches and the Kremser group method, this research proposes a simple method, using a mathematical equation, to predict MSS occurring in the thermally coupled distillation separation column. Besides, Aspen plus simulator is employed to carry out rigorous simulation verification. By validation analysis, this method is relatively simple and effective for predicting the MSS occurring in the thermal-coupled distillation.


Multiple steady states Rigorous simulation Mathematical equation Thermal-coupled distillation 


Funding Information

This work is supported by the National Natural Science Foundation of China (No. 21376240).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Amminudin KA, Smith R (2001) Design and optimization of fully thermally coupled distillation columns. Chem Eng Res Des 79(7):716–724CrossRefGoogle Scholar
  2. Asprion N, Kaibel G (2010) Dividing wall columns: fundamentals and recent advances. Chem Eng Process 49:8CrossRefGoogle Scholar
  3. Dejanovi’c I, Matijaˇsevi’c L, Oluji’c Z (2010) Dividing wall column—a breakthrough towards sustainable distilling. Chem Eng Process 49:22CrossRefGoogle Scholar
  4. Dejanović I, Matijašević L, Jansen H, Olujić Ž (2011) Designing a packed dividing wall column for an aromatics processing plant. Ind Eng Chem Res 50(9):5680–5692CrossRefGoogle Scholar
  5. Ehlers C, Egger T, Fieg G (2017) Experimental operation of a reactive dividing wall column and comparison with simulation results. AICHE J 63(3):1036–1050CrossRefGoogle Scholar
  6. Halvorsen IJ, Skogestad S (2003) Vmin diagram for a two-product column. Ind Eng Chem Res 42:9Google Scholar
  7. Jacobsen EW, Skogestad S (1991) Multiple steady states in ideal two-product distillation. AICHE J 37(4):13CrossRefGoogle Scholar
  8. Kaibel G (1987) Distillation columns with vertical partitions. Chem Eng Technol 10(1):92–98CrossRefGoogle Scholar
  9. Kim YH (2017) An energy-efficient crude distillation unit with a prefractionator. Chem Eng Technol 40(3):588–597MathSciNetCrossRefGoogle Scholar
  10. Li WS, Zhong L, He YC, Meng JH, Yao FL, Guo YS, Xu CJ (2015) Multiple steady-states analysis and unstable operating point stabilization in homogeneous azeotropic distillation with intermediate entrainer. Ind Eng Chem Res 54(31):7668–7686CrossRefGoogle Scholar
  11. Li LM, Sun LY, Yang DL, Zhong W, Zhu Y, Tian YY (2016) Reactive dividing wall column for hydrolysis of methyl acetate: design and control. Chin J Chem Eng 24(10):1360–1368CrossRefGoogle Scholar
  12. Li LM, Guo LJ, Tu YQ, Yu N, Sun LY, Tian YY, Li QS (2017) Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: design and control. Comput Chem Eng 99:117–134CrossRefGoogle Scholar
  13. Lin W-J, Seader JD, Wayburn TL (1987) Computing multiple solutions to systems of interlinked separation columns. AICHE J 33(6):12CrossRefGoogle Scholar
  14. Lomelí-Rodríguez M, Rivera-Toledo M, López-Sánchez JA (2017) Process intensification of the synthesis of biomass-derived renewable polyesters: reactive distillation and divided wall column polyesterification. Ind Eng Chem Res 56(11):3017–3032CrossRefGoogle Scholar
  15. Long H, Clark J, Benyounes H, Shen W, Dong L, Wei S a (2016) Optimal design and economic evaluation of dividing-wall columns. Chem Eng Technol 39(6):1077–1086CrossRefGoogle Scholar
  16. Patrascu I, Bildea CS, Kiss AA (2017) Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration. Chem Eng Res Des 119:66–74CrossRefGoogle Scholar
  17. Petlyuk FB, Platonov VM, Slavinsk DM (1965) Thermodynamically optimal method for separating multicomponent mixtures. Int Chem Eng 5(3):555Google Scholar
  18. Purohit JL, Mahajani SM, Patwardhan SC (2013) Analysis of steady-state multiplicity in reactive distillation columns. Ind Eng Chem Res 52(14):5191–5206CrossRefGoogle Scholar
  19. Qian X, Jia S, Skogestad S, Yuan XG, Luo YQ (2016a) Model predictive control of reactive dividing wall column for the selective hydrogenation and separation of a C3 stream in an ethylene plant. Ind Eng Chem Res 55(36):9738–9748CrossRefGoogle Scholar
  20. Qian X, Jia SK, Luo YQ, Yuan XG, Yu KT (2016b) Control of reactive dividing wall column for selective hydrogenation and separation of C3 stream. Chin J Chem Eng 24(9):1213–1228CrossRefGoogle Scholar
  21. Rafael CC, Seader JD, Wayburn TL (1986) Multiple steady-state solutions for interlinked separation systems. Ind.eng.chem.fundamen 25(4):566–576CrossRefGoogle Scholar
  22. Rodriguez M, Li PZ, Diaz I (2017) A control strategy for extractive and reactive dividing wall columns. Chem Eng Process 113:14–19CrossRefGoogle Scholar
  23. Chavez R, Seader JD, Waybur TL (1986) Multiple steady-state solutions for interlinked separation systems. Ind Eng Chem Fundam 25:11CrossRefGoogle Scholar
  24. Song E, Li S, Wang E (2019) Dynamic analysis for the multi-steady states in the dividing wall column. Process Integr Optim Sustain. 3(2):179–187CrossRefGoogle Scholar
  25. Song E, Wang E (2017) Design of dividing wall column considering its multiple steady state characteristic. Chem Eng Technol 41(3)MathSciNetCrossRefGoogle Scholar
  26. Sun L, Bi X (2014) Shortcut method for the design of reactive dividing wall column. Ind Eng Chem Res 53(6):2340–2347CrossRefGoogle Scholar
  27. Tututi-Avila S, Dominguez-Diaz LA, Medina-Herrera N, Jimenez-Gutierrez A, Hahn J (2017) Dividing-wall columns: design and control of a kaibel and a satellite distillation column for BTX separation. Chem Eng Process 114(1–15):1–15CrossRefGoogle Scholar
  28. Uwitonze H, Han S, Hwang KS (2014a) New design method for fully thermally coupled distillation column using group and approximate methods. Ind Eng Chem Res 53(30):11979–11988CrossRefGoogle Scholar
  29. Uwitonze H, Han S, Kim S, Hwang KS (2014b) Structural design of fully thermally coupled distillation column using approximate group methods. Chem Eng Process 85:155–167CrossRefGoogle Scholar
  30. Uwitonze H, Goyal A, Kim S, Kim S, Hwang KS (2014c) Fenske and Kremser group methods in the design of fully thermally coupled distillation column. Comput Aided Chem Eng 33:1705–1710CrossRefGoogle Scholar
  31. Van Duc Long N, Lee M (2012) Dividing wall column structure design using response surface methodology. Comput Chem Eng 37:119–124CrossRefGoogle Scholar
  32. Wang E (2015) Simulation and analysis of multiple steady states in dividing wall column. Asia Pac J Chem Eng 10:9Google Scholar
  33. Xu L, Li M, Yin X, Yuan X (2017) New intensified heat integration of vapor recompression assisted dividing wall column. Ind Eng Chem Res 56(8):2188–2196CrossRefGoogle Scholar
  34. Yang BL, Wu J, Zhao GS, Wang HJ, Lu SQ (2006) Multiplicity analysis in reactive distillation column using ASPEN PLUS. Chin J Chem Eng 14(3):301–308CrossRefGoogle Scholar
  35. Yildirim Ö, Kiss AA, Kenig EY (2011) Dividing wall columns in chemical process industry_ a review on current activities. Sep Purif Technol 80:15CrossRefGoogle Scholar
  36. Yuan Y, Huang KJ, Chen HS, Zhang LA, Wang SF (2017) Asymmetrical temperature control of a BTX dividing-wall distillation column. Chem Eng Res Des 123:84–98CrossRefGoogle Scholar
  37. Zhai J, Liu YL, Li LM, Zhu Y, Zhong W, Sun LY (2015) Applications of dividing wall column technology to industrial-scale cumene production. Chem Eng Res Des 102:138–149CrossRefGoogle Scholar
  38. Zhu Z, Liu X, Cao Y, Liang S, Wang Y (2017) Controllability of separate heat pump distillation for separating isopropanol-chlorobenzene mixture. Korean J Chem Eng 34(3):866–875CrossRefGoogle Scholar
  39. Zong X, Huang KJ, Yuan Y, Chen HS, Yu JP (2015) Design and operation of dividing-wall distillation columns. 2. Process dynamics and operation. Chem Eng Process 91:89–103CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Zhengzhou Non-ferrous Metals Research Institute Co. Ltd. of CHALCOZhengzhouChina
  2. 2.School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations