Coverage Optimization for UAV-Aided Internet of Things with Partial Channel Knowledge

  • Xuanxuan Wang
  • Wei Feng
  • Yunfei Chen
  • Ning Ge
Research paper


Due to the high maneuverability of unmanned aerial vehicles (UAVs), they have been widely deployed to boost the performance of Internet of Things (IoT). In this paper, to promote the coverage performance of UAV-aided IoT communications, we maximize the minimum average rate of the IoT devices by jointly optimizing the resource allocation strategy and the UAV altitude. Particularly, to depict the practical propagation environment, we take the composite channel model including both the small-scale and the large-scale channel fading into account. Due to the difficulty in acquiring the random small-scale channel fading, we assume that only the large-scale channel sate information is available. On this basis, we formulate an optimization problem, which is not convex and challenging to solve. Then, an efficient iterative algorithm is proposed using block coordinate descent and successive convex optimization tools. Finally, simulation results are presented to demonstrate the significant performance gain of the proposed scheme over existing ones.


block coordinate descent coverage optimization IoT UAVs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. D. Xu, W. He, S. Li. Internet of Things in industries: A survey [J]. IEEE Transaction on Industrial Informatics, 2014, 10(4): 2233–2243.CrossRefGoogle Scholar
  2. [2]
    C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, et al. Trust-based communication for the industrial Internet of Things [J]. IEEE Communications Magazine, 2018, 56(2): 16–22.CrossRefGoogle Scholar
  3. [3]
    L. Hou, S. Zhao, X. Xiong, et al. Internet of Things cloud: Architecture and implementation [J]. IEEE Communications Magazine, 2016, 54(12): 32–39.CrossRefGoogle Scholar
  4. [4]
    I. Bisio, F. Lavagetto, G. Luzzati. Cooperative application layer joint video coding in the Internet of remote things [J]. IEEE Internet of Things Journal, 2016, 3(6): 1418–1426.CrossRefGoogle Scholar
  5. [5]
    D. Pal, S. Funilkul, N. Charoenkitkarn, et al. Internet-of-Things and smart homes for elderly healthcare: An end user perspective [J]. IEEE Access, 2018, 6: 10483–10496.CrossRefGoogle Scholar
  6. [6]
    J. Delsing. Local cloud Internet of Things automation: Technology and business model features of distributed Internet of Things automation solutions [J]. IEEE Industrial Electronics Magazine, 2017, 11(4): 8–21.CrossRefGoogle Scholar
  7. [7]
    V. Sharma, R. Kumar, R. Kaur. UAV-assisted content-based sensor search in IoTs [J]. Electronics Letter, 2017, 53(11): 724–726.CrossRefGoogle Scholar
  8. [8]
    S. Lien, K. Chen, Y. Lin. Toward ubiquitous massive accesses in 3GPP machine-to-machine communications [J]. IEEE Communications Magazine, 2011, 49(4): 66–74.CrossRefGoogle Scholar
  9. [9]
    V. Scilimati, A. Petitti, P. Boccadoro, et al. Industrial Internet of Things at work: A case study analysis in robotic-aided environmental monitoring [J]. IET Wireless Sensor Systems, 2017, 7(5): 155–162.CrossRefGoogle Scholar
  10. [10]
    N. H. Motlagh, M. Bagaa, T. Taleb. UAV-based IoT platform: A crowd surveillance use case [J]. IEEE Communications Magazine, 2017, 55(2): 128–134.CrossRefGoogle Scholar
  11. [11]
    N. Hossein Motlagh, T. Taleb, O. Arouk. Low-altitude unmanned aerial vehicles-based Internet of Things services: Comprehensive survey and future perspectives [J]. IEEE Internet of Things Journal, 2016, 3(6): 899–922.CrossRefGoogle Scholar
  12. [12]
    M. Gharibi, R. Boutaba, S. L. Waslander. Internet of drones [J]. IEEE Access, 2016, 4: 1148–1162.CrossRefGoogle Scholar
  13. [13]
    Q. Yang, S. Yoo. Optimal UAV path planning: Sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms [J]. IEEE Access, 2018, 6: 13671–13684.CrossRefGoogle Scholar
  14. [14]
    A. Giyenko, Y. I. Cho. Intelligent UAV in smart cities using IoT [C]//16th International Conference on Control, Automation and Systems, Gyeongju, 2016: 207–210.Google Scholar
  15. [15]
    G. Ding, Q. Wu, L. Zhang, et al. An amateur drone surveillance system based on the cognitive Internet of Things [J]. IEEE Communications Maganize, 2018, 56(1): 29–35.CrossRefGoogle Scholar
  16. [16]
    S. Arabi, H. Elbiaze, E. Sabir, et al. Tradeoffs for data collection and wireless energy transfer dilemma in IoT environments [C]//IEEE International Conference on Communications, Kansas City, MO, 2018: 1–6.Google Scholar
  17. [17]
    D. He, S. Chan, M. Guizani. Communication security of unmanned aerial vehicles [J]. IEEE Wireless Communications, 2017, 24(4): 134–139.CrossRefGoogle Scholar
  18. [18]
    S. Chandrasekharan, K. Gomez, A. Al-Hourani, et al. Designing and implementing future aerial communication networks [J]. IEEE Communications Maganize, 2016, 54(5): 26–34.CrossRefGoogle Scholar
  19. [19]
    A. Al-Hourani, S. Kandeepan, S. Lardner. Optimal LAP altitude for maximum coverage [J]. IEEE Wireless Communications Letter, 2014, 3(6): 569–572.CrossRefGoogle Scholar
  20. [20]
    Y. Zeng, R. Zhang, T. J. Lim. Throughput maximization for UAVenabled mobile relaying systems [J]. IEEE Transaction on Communications, 2016, 64(12): 4983–4996.CrossRefGoogle Scholar
  21. [21]
    F. Jiang, A. L. Swindlehurst. Optimization of UAV heading for the ground-to-air uplink [J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 993–1005.CrossRefGoogle Scholar
  22. [22]
    M. M. Azari, F. Rosas, K. Chen, et al. Joint sum-rate and power gain analysis of an aerial base station [C]//IEEE Globecom Workshops, Washington, DC, 2016: 1–6.Google Scholar
  23. [23]
    Y. Zeng, R. Zhang. Energy-efficient UAV communication with trajectory optimization [J]. IEEE Transaction on Wireless Communications, 2017, 16(6): 3747–3760.CrossRefGoogle Scholar
  24. [24]
    C. Zhan, Y. Zeng, R. Zhang. Energy-efficient data collection in UAV enabled wireless sensor network [J]. IEEE Wireless Communications Letter, 2018, 7(3): 328–331.CrossRefGoogle Scholar
  25. [25]
    F. Ono, H. Ochiai, R. Miura. A wireless relay network based on unmanned aircraft system with rate optimization [J]. IEEE Transaction on Wireless Communications, 2016, 15(11): 7699–7708.CrossRefGoogle Scholar
  26. [26]
    M. M. Azari, F. Rosas, K. Chen, et al. Ultra reliable UAV communication using altitude and cooperation diversity [J]. IEEE Transactions on Communications, 2018, 66(1): 330–344.CrossRefGoogle Scholar
  27. [27]
    T. Qi, W. Feng, Y. Wang. Outage performance of non-orthogonal multiple access based unmanned aerial vehicles satellite networks [J]. China Communications, 2018, 15(5): 1–8.CrossRefGoogle Scholar
  28. [28]
    Y. Chen, W. Feng, G. Zheng. Optimum placement of UAV as relays [J]. IEEE Communications Letters, 2018 22(2): 248–251.CrossRefGoogle Scholar
  29. [29]
    S. Eom, H. Lee, J. Park, et al. UAV-aided wireless communication design with propulsion energy constraint [C]//2018 IEEE International Conference on Communications, Kansas City, MO, 2018: 1–6.Google Scholar
  30. [30]
    Q. Wu, Y. Zeng, R. Zhang. Joint trajectory and communication design for multi-UAV enabled wireless networks [J]. IEEE Transaction on Wireless Communications, 2018, 17(3): 2109–2121.CrossRefGoogle Scholar
  31. [31]
    C. Liu, W. Feng, T. Wei, et al. Fairness-oriented hybrid precoding for massive MIMO maritime downlink systems with large-scale CSIT [J]. China Communications, 2018, 15(1): 52–61.CrossRefGoogle Scholar
  32. [32]
    W. Feng, Y. Wang, D. Lin, et al. When mmWave communications meet network densification: A scalable interference coordination perspective [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(7): 1459–1471.CrossRefGoogle Scholar
  33. [33]
    W. Feng, J. Wang, Y. Chen, et al. UAV-aided MIMO communications for 5G Internet of Things [J]. IEEE Internet of Things Journal, to appear, 2018.Google Scholar
  34. [34]
    W. Feng, Y. Wang, N. Ge, et al. Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10): 2067–2081.CrossRefGoogle Scholar
  35. [35]
    W. Feng, N. Ge, J. Lu. Coordinated satellite-terrestrial networks: A robust spectrum sharing perspective [C]//26th Wireless and Optical Communication Conference, Newark, New Jersey, USA, 2017: 1–5.Google Scholar
  36. [36]
    D. P. Bertsekas. Nonlinear programming [M]. Athena scientific Belmont, 1999.zbMATHGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Engineeringthe University of WarwickCoventryUK

Personalised recommendations