Advertisement

Timing Synchronization and Ranging in Networked UAV-Aided OFDM Systems

  • Chaoxing Yan
  • Jingjing Wang
  • Lingang Fu
  • Chunxiao JiangEmail author
  • Ming Chen
  • Yong Ren
Research paper
  • 8 Downloads

Abstract

The space-air-ground network architecture integrates satellite systems, aerial networks, and terrestrial networks, where the unmanned aerial vehicle (UAV) communication in the air segment has attracted particular interest and demonstrated tremendous potential in both military and civilian applications. Orthogonal frequency division multiplexing (OFDM) can be an effective solution to provide high rate and reliable transmission in UAV communication systems because of its high spectral efficiency and robustness against frequency selective fading. We herein focus our attention on two critical issues in our proposed UAV aided OFDM system, i.e., timing synchronization and ranging. Moreover, extensive simulations are conducted for evaluation. Finally, we design a real-world field test for verifying the effectiveness of our proposed multi-UAV OFDM communication system.

Keywords

space-air-ground network UAV-aided communication systems timing synchronization OFDM ranging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Liu, Y. Shi, Y. Shi, et al. Space-air-ground integrated network: A survey [J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714–2741.CrossRefGoogle Scholar
  2. [2]
    J. Wang, C. Jiang, Z. Wei, et al. Joint UAV hovering altitude and power control for space-air-ground IoT networks [J]. IEEE Internet of Things Journal, 2018.Google Scholar
  3. [3]
    J. Wang, C. Jiang, H. Zhang, et al. Aggressive congestion control mechanism for space systems [J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(3): 28–33.CrossRefGoogle Scholar
  4. [4]
    K. Namuduri, S. Chaumette, J. H. Kim, et al. UAV networks and communications [M]. Cambridge, UK: Cambridge University Press, 2018.Google Scholar
  5. [5]
    C. Stöcker, R. Bennett, F. Nex, et al. Review of the current state of UAV regulations [J]. Remote Sensing, 2017, 9(5): 459.CrossRefGoogle Scholar
  6. [6]
    T. M. Schmidl, D. C. Cox. Robust frequency and timing synchronization for OFDM [J]. IEEE Transactions on Communications, 1997, 45(12): 1613–1621.CrossRefGoogle Scholar
  7. [7]
    H. Minn, V. K. Bhargava, K. B. Letaief. A robust timing and frequency synchronization for OFDMsystems [J]. IEEE Transactions onWireless Communications, 2003, 2(4): 822–839.CrossRefGoogle Scholar
  8. [8]
    G. Ren, C. Sun, H. Ni, et al. OFDM-based precise ranging technique in space applications [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2217–2221.CrossRefGoogle Scholar
  9. [9]
    A. B. Awoseyila, C. Kasparis, B. G. Evans. Robust time-domain timing and frequency synchronization for OFDM systems [J]. IEEE Transactions on Consumer Electronics, 2009, 55(2): 391–399.CrossRefGoogle Scholar
  10. [10]
    N. Cheng, W. Xu, W. Shi, et al. Air-ground integrated mobile edge networks: Architecture, challenges and opportunities [J]. IEEE Communications Magazine, 2018, 56(8): 26–32.CrossRefGoogle Scholar
  11. [11]
    Unmanned systems integrated roadmap FY 2011–2036 [Z]. 2011.Google Scholar
  12. [12]
    J. Wang, C. Jiang, Z. Wei, et al. UAV aided network association in space-air-ground communication networks [C]//IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 2018: 1–6.Google Scholar
  13. [13]
    Q. Yu, J. Wang, L. Bai. Architecture and critical technologies of space information networks [J]. Journal of Communications & Information Networks, 2016, 1(3): 1–9.CrossRefGoogle Scholar
  14. [14]
    A. Al-Hourani, S. Kandeepan, S. Lardner. Optimal LAP altitude for maximum coverage [J]. IEEEWireless Communications Letters, 2014, 3(6): 569–572.CrossRefGoogle Scholar
  15. [15]
    S. Temel, İ. Bekmezci. On the performance of flying ad hoc networks (FANETs) utilizing near space high altitude platforms (HAPs) [C]//6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 2013: 461–465.Google Scholar
  16. [16]
    J. Wang, C. Jiang, K. Zhang, et al. Vehicular sensing networks in a smart city: Principles, technologies and applications [J]. IEEEWireless Communications, 2018, 25(1): 122–132.CrossRefGoogle Scholar
  17. [17]
    J. Wang, C. Jiang, Z. Han, et al. Internet of vehicles: Sensing-aided transportation information collection and diffusion [J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 3813–3825.CrossRefGoogle Scholar
  18. [18]
    M. Hadded, P. Muhlethaler, A. Laouiti, et al. TDMA-Based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues [J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2461–2492.CrossRefGoogle Scholar
  19. [19]
    I. Bekmezci, O. K. Sahingoz, Ş. Temel. Flying ad hoc networks (FANETs): A survey [J]. Ad Hoc Networks, 2013, 11(3): 1254–1270.CrossRefGoogle Scholar
  20. [20]
    S. Chandrasekharan, K. Gomez, A. Al-Hourani, et al. Designing and implementing future aerial communication networks [J]. IEEE Communications Magazine, 2016, 54(5): 26–34.CrossRefGoogle Scholar
  21. [21]
    E. Haas. Aeronautical channel modeling [J]. IEEE Transactions on Vehicular Technology, 2002, 51(2): 254–264.CrossRefGoogle Scholar
  22. [22]
    L. Bai, L. Zhu, X. Zhang, et al. Multi-satellite relay transmission in 5G: Concepts, techniques, and challenges [J]. IEEE Network, 2018, 32(5): 38–44.CrossRefGoogle Scholar
  23. [23]
    R. Jain, F. Templin. Requirements, challenges and analysis of alternatives for wireless datalinks for unmanned aircraft systems [J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 852–860.CrossRefGoogle Scholar
  24. [24]
    J. Wang, C. Jiang, Z. Han, et al. Taking drones to the next level: Cooperative distributed unmanned-aerial-vehicular networks for small and mini drones [J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 73–82.CrossRefGoogle Scholar
  25. [25]
    J. Wang, C. Jiang, Z. Ni, et al. Reliability of cloud controlled multi-UAV systems for on-demand services [C]//IEEE Global Communications Conference (GLOBECOM), Singapore, 2017: 1–6.Google Scholar
  26. [26]
    F. Luo, C. Jiang, S. Yu, et al. Stability of cloud-based UAV systems supporting big data acquisition and processing [J]. IEEE Transactions on Cloud Computing, 2017.Google Scholar
  27. [27]
    U. Epple, M. Schnell. Overview of legacy systems in l-band and its influence on the future aeronautical communication system LDACS1 [J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(2): 31–37.CrossRefGoogle Scholar
  28. [28]
    G. Bartoli, R. Fantacci, D. Marabissi. AeroMACS: A new perspective for mobile airport communications and services [J]. IEEEWireless Communications, 2013, 20(6): 44–50.CrossRefGoogle Scholar
  29. [29]
    D. W. Matolak, R. Sun. Unmanned aircraft systems: Air-ground channel characterization for future applications [J]. IEEE Vehicular Technology Magazine, 2015, 10(2): 79–85.CrossRefGoogle Scholar
  30. [30]
    H. Abdzadeh-Ziabari, M. G. Shayesteh. Robust timing and frequency synchronization for OFDM systems [J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 3646–3656.CrossRefGoogle Scholar
  31. [31]
    G. Ren, Y. Chang, H. Zhang, et al. Synchronization method based on a new constant envelop preamble for OFDM systems [J]. IEEE Transactions on Broadcasting, 2005, 51(1): 139–143.CrossRefGoogle Scholar
  32. [32]
    Y. Ma, C. Yan, S. Zhou, et al. An OFDM timing synchronization method based on averaging the correlations of preamble symbol [C]//7th International Conference on Wireless and Satellite Systems, Bradford, UK, 2015: 229–238.CrossRefGoogle Scholar
  33. [33]
    H. Ni, G. Ren, Y. Chang. A TDOA location scheme in OFDM basedWMANs [J]. IEEE Transactions on Consumer Electronics, 2008, 54(3): 1017–1021.CrossRefGoogle Scholar
  34. [34]
    L. Dai, Z. Wang, C. Pan, et al. Wireless positioning using TDS-OFDM signals in single-frequency networks [J]. IEEE Transactions on Broadcasting, 2012, 58(2): 236–246.CrossRefGoogle Scholar
  35. [35]
    B. Sheng. Enhanced OFDM-based ranging method for space applications [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1606–1609.CrossRefGoogle Scholar

Copyright information

© Posts & Telecom Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chaoxing Yan
    • 1
  • Jingjing Wang
    • 2
  • Lingang Fu
    • 1
  • Chunxiao Jiang
    • 3
    • 4
    Email author
  • Ming Chen
    • 1
  • Yong Ren
    • 2
  1. 1.Beijing Research Institute of TelemetryBeijingChina
  2. 2.Department of Electrical EngineeringTsinghua UniversityBeijingChina
  3. 3.Tsinghua Space CenterTsinghua UniversityBeijingChina
  4. 4.Key Laboratory of EDAResearch Institute of Tsinghua University in ShenzhenShenzhenChina

Personalised recommendations