Advertisement

Asian Bioethics Review

, Volume 10, Issue 4, pp 245–259 | Cite as

Technoscience and Biodiversity Conservation

  • Christophe BoëteEmail author
Original Article

Abstract

The discovery of CRISPR/Cas9 has opened new avenues in gene editing. This system, usually considered as molecular scissors, permits the cutting of the DNA at a targeted site allowing the introduction of new genes or the removal or the modification of existing ones. The genome-editing, involving gene drive or not, is then considered with a strong interest in a variety of fields ranging from agriculture to public health and conservation biology. Given its controversial aspects, it is then no surprise that actors in biodiversity conservation do express conflicting views on this emerging and disruptive technology. The positions are ranging from a request for a moratorium to the will to test and deploy it in strategies aiming at eradicating invasive species of mammals on islands. Reviewing some of its recent developments brings light on the conflicts of interest, the financial support, and lobbying currently occurring in this growing field of biotechnology. While an optimistic view on the use of gene drive for ecosystem conservation was first promoted by several molecular biologists, the risks and uncertainties associated have now led to some reservations. Overall, the eventual use of this novel approach for conservation raises concerns related to the engagement of the public, the communication between scientists, and the public and the risk of a manufactured consent. There are also a series of essential ethical and philosophical questions on the relations we have with Nature that needs to be answered.

Keywords

Technoscience Gene drive Ethics CRISPR Conservation Invasive species 

Notes

Compliance with Ethical Standards

Conflict of Interest

The author declares no conflict of interest.

References

  1. Banks, Natalie Clare, Dean Ronald Paini, Kirsty Louise Bayliss, and Michael Hodda. 2015. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters 18 (2): 188–199.  https://doi.org/10.1111/ele.12397.Google Scholar
  2. Bassett, Andrew R., and Ji-Long Liu. 2014. CRISPR/Cas9 and genome editing in Drosophila. Journal of Genetics and Genomics 41 (1): 7–19.  https://doi.org/10.1016/j.jgg.2013.12.004.Google Scholar
  3. Belhaj, Khaoula, Angela Chaparro-Garcia, Sophien Kamoun, Nicola J. Patron, and Vladimir Nekrasov. 2015. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology 32: 76–84.  https://doi.org/10.1016/j.copbio.2014.11.007.Google Scholar
  4. Beumer, Carijn, and Pim Martens. 2013. IUCN and perspectives on biodiversity conservation in a changing world. Biodiversity and Conservation 22 (13): 3105–3120.  https://doi.org/10.1007/s10531-013-0573-6.Google Scholar
  5. Boëte, Christophe. 2018a. Public engagement and communication: Who is in charge? EMBO Reports 19 (1): 1–2.  https://doi.org/10.15252/embr.201745379.Google Scholar
  6. Boëte, Christophe. 2018b. Letter: Gene drive and Trust in Science. GeneWatch 31 (1): 18–19. http://www.councilforresponsiblegenetics.org/GeneWatch/GeneWatchPage.aspx?pageId=595.Google Scholar
  7. Bonneuil, Christophe. 2015. Anthropocène. In Dictionnaire de la pensée écologique, ed. Dominique Bourg and Alain Papaux, 35–40. Paris: Presses Universitaires de France (PUF).Google Scholar
  8. Burt, Austin. 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Biological Sciences 270 (1518): 921–928.  https://doi.org/10.1098/rspb.2002.2319.
  9. Callaway, Ewen. 2016. ‘Gene drive’ moratorium shot down at UN biodiversity meeting. Nature.  https://doi.org/10.1038/nature.2016.21216.
  10. Camus, Albert. 1944. Sur une philosophie de l’expression, Compte rendu de l’ouvrage de Brice Parain, Recherches sur la nature et la fonction du langage. éd. Gallimard, in Poésie 44, n° 17, p. 22.Google Scholar
  11. Carroll, Scott P. 2011. Conciliation biology: The eco-evolutionary management of permanently invaded biotic systems. Evolutionary Applications 4 (2): 184–199.  https://doi.org/10.1111/j.1752-4571.2010.00180.x.Google Scholar
  12. Caulfield, Timothy, and Celeste Condit. 2012. Science and the sources of hype. Public Health Genomics 15 (3–4): 209–217.  https://doi.org/10.1159/000336533.Google Scholar
  13. Chase, Michael J., Scott Schlossberg, Curtice R. Griffin, Philippe J.C. Bouché, Sintayehu W. Djene, Paul W. Elkan, Sam Ferreira, Falk Grossman, Edward Mtarima Kohi, Kelly Landen, Patrick Omondi, Alexis Peltier, S.A. Jeanetta Selier, and Robert Sutcliffe. 2016. Continent-wide survey reveals massive decline in African savannah elephants. PeerJ 4: e2354.  https://doi.org/10.7717/peerj.2354.Google Scholar
  14. Chivian, Eric and Aaron Bernstein, ed. 2008. Sustaining Life: How Human Health Depends on Biodiversity. New York, NY: Oxford University Press.Google Scholar
  15. Civil Society Working Group on Gene Drives. 2016. A call for conservation with conscience: No place for gene drives in conservation. http://www.synbiowatch.org/wp-content/uploads/2016/09/letter_vs_genedrives.pdf .
  16. Corlett, Richard T. 2017. A bigger toolbox: Biotechnology in biodiversity conservation. Trends in Biotechnology 35 (1): 55–65.  https://doi.org/10.1016/j.tibtech.2016.06.009.Google Scholar
  17. Courchamp, Franck, Ivan Jaric, Céline Albert, Yves Meinard, William J. Ripple, and Guillaume Chapron. 2018. The paradoxical extinction of the most charismatic animals. PLoS Biology 16 (4): e2003997.  https://doi.org/10.1371/journal.pbio.2003997.Google Scholar
  18. Davis, Mark A., Matthew K. Chew, Richard J. Hobbs, Ariel E. Lugo, John J. Ewel, Geerat J. Vermeij, James H. Brown, Michael L. Rosenzweig, Mark R. Gardener, Scott P. Carroll, Ken Thompson, Steward T.A. Pickett, Juliet C. Stromberg, Peter Del Tredici, Katharine N. Suding, Joan G. Ehrenfeld, J. Philip Grime, Joseph Mascaro, and John C. Briggs. 2011. Don’t judge species on their origins. Nature 474: 153.  https://doi.org/10.1038/474153a.Google Scholar
  19. Descola, Philippe. 2005. Par delà nature et culture. Paris: Gallimard.Google Scholar
  20. Eckhoff, Philip A., Edward A. Wenger, H. Charles, J. Godfray, and Austin Burt. 2017. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proceedings of the National Academy of Sciences of the United States of America 114 (2): E255–E264.  https://doi.org/10.1073/pnas.1611064114.Google Scholar
  21. Ellul, Jacques. 1988. Le bluff technologique, 479. Paris: Hachette.Google Scholar
  22. Emerson, Claudia, Stephanie James, Katherine Littler, and Filippo Randazzo. 2017. Principles for gene drive research. Science 358 (6367): 1135–1136.  https://doi.org/10.1126/science.aap9026.Google Scholar
  23. Engel, J. Ronald, and Joan Gibb Engel, eds. 1990. Ethics of environment and development: global challenge and international response. London: Belhaven Press.Google Scholar
  24. Esvelt, Kevin M. 2017a. Aotearoa: Mistakes and Amends. Responsive Science 17 November. https://www.responsivescience.org/pub/aotearoa-amends
  25. Esvelt, Kevin M. 2017b. Precaution: Open gene drive research. Science 355 (6325): 589–590.  https://doi.org/10.1126/science.aal5325.Google Scholar
  26. Esvelt, Kevin M., and Neil J. Gemmell. 2017. Conservation demands safe gene drive. PLoS Biology 15 (11): e2003850.  https://doi.org/10.1371/journal.pbio.2003850.Google Scholar
  27. Esvelt, Kevin M., Andrea L. Smidler, Flaminia Catteruccia, and George M. Church. 2014. Concerning RNAguided gene drives for the alteration of wild populations. eLife 3: e03401.  https://doi.org/10.7554/eLife.03401.Google Scholar
  28. Fujimura, Joan H. 1988. The molecular biological bandwagon in cancer research: Where social worlds meet. Social Problems 35 (3): 261–283. http://faculty.poly.edu/~jbain/scitechsoc/readings/88Fujimura.pdf.Google Scholar
  29. Gantz, Valentino M., Nijole Jasinskiene, Olga Tatarenkova, Aniko Fazekas, Vanessa M. Macias, Ethan Bier, and Anthony A. James. 2015. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences of the United States of America 112 (49): E6736–E6743.  https://doi.org/10.1073/pnas.1521077112.Google Scholar
  30. Given, David R. 1993. What is conservation biology and why is it so important? Journal of the Royal Society of New Zealand 23 (2): 55–60.  https://doi.org/10.1080/03036758.1993.10721217.Google Scholar
  31. Goswami, Varun R., Divya Vasudev, and Madan K. Oli. 2014. The importance of conflict-induced mortality for conservation planning in areas of human–elephant co-occurrence. Biological Conservation 176: 191–198.  https://doi.org/10.1016/j.biocon.2014.05.026.Google Scholar
  32. Griffin, Peter. 2017. Forget fake news – the bigger problem in science is PR hype! Sciblogs: Griffin’s Gadgets, 18 August. https://sciblogs.co.nz/griffins-gadgets/2017/08/18/forget-fake-news-bigger-problem-science-prhype/.
  33. Hammond, Andrew M., Roberto Galizi, Kyros Kyrou, Alekos Simoni, Carla Siniscalchi, Dimitris Katsanos, Matthew Gribble, Dean Baker, Eric Marois, Steven Russell, Austin Burt, Nikolai Windbichler, Andrea Crisanti, and Tony Nolan. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology 34 (1): 78–83.  https://doi.org/10.1038/nbt.3439.Google Scholar
  34. Hammond, Andrew M., Kyros Kyrou, Marco Bruttini, Ace North, Roberto Galizi, Xenia Karlsson, Nace Kranjc, Francesco M. Carpi, Romina D’Aurizio, Andrea Crisanti, and Tony Nolan. 2017. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genetics 13 (10): e1007039.  https://doi.org/10.1371/journal.pgen.1007039.Google Scholar
  35. Herman, Edward, and Noam Chomsky. 1988. Manufacturing consent. The political economy of the mass media. Pantheon Books.Google Scholar
  36. Hughes, Terry P., James T. Kerry, Andrew H. Baird, Sean R. Connolly, Andreas Dietzel, C. Mark Eakin, Scott F. Heron, Andrew S. Hoey, Mia O. Hoogenboom, Gang Liu, Michael J. McWilliam, Rachel J. Pears, Morgan S. Pratchett, William J. Skirving, Jessica S. Stella, and Gergely Torda. 2018. Global warming transforms coral reef assemblages. Nature 556: 492–496.  https://doi.org/10.1038/s41586-018-0041-2.Google Scholar
  37. Hwang, Woong Y., Yanfang Fu, Deepak Reyon, Morgan L. Maeder, Shengdar Q. Tsai, Jeffry D. Sander, Randall T. Peterson, J.-R. Joanna Yeh, and J. Keith Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31 (3): 227–229.  https://doi.org/10.1038/nbt.2501.Google Scholar
  38. Johnson, J.A., R. Altwegg, D.M. Evans, J.G. Ewen, I.J. Gordon, N. Pettorelli, and J. Keith Young. 2016. Is there a future for genome-editing technologies in conservation? Animal Conservation 19 (2): 97–101.  https://doi.org/10.1111/acv.12273.Google Scholar
  39. Kaebnick, Gregory E. 2017. The spectacular garden: Where might de-extinction lead? The Hastings Center Report 47 (Suppl 2): S60–S64.  https://doi.org/10.1002/hast.754.
  40. Kaebnick, Gregory E., Elizabeth Heitman, James P. Collins, Jason A. Delborne, Wayne G. Landis, Keegan Sawyer, Lisa A. Taneyhill, and David E. Winickoff. 2016. Precaution and governance of emerging technologies. Science 354 (6313): 710–711.  https://doi.org/10.1126/science.aah5125.Google Scholar
  41. Latour, Bruno. 1999. Politique de la Nature. Paris: La Découverte.Google Scholar
  42. Lavery, James V., Paulina O. Tinadana, Thomas W. Scott, Laura C. Harrington, Janine M. Ramsey, Claudia Ytuarte-Nuñez, and Anthony A. James. 2010. Towards a framework for community engagement in global health research. Trends in Parasitology 26 (6): 279–283.  https://doi.org/10.1016/j.pt.2010.02.009.Google Scholar
  43. Leimgruber, Peter, J.B. Gagnon, Christian M. Wemmer, D.S. Kelly, Melissa A. Songer, and E.R. Selig. 2003. Fragmentation of Asia’s remaining wildlands: Implications for Asian elephant conservation. Animal Conservation 6 (4): 347–359.  https://doi.org/10.1017/S1367943003003421.Google Scholar
  44. Lippmann, Walter. 1922. Public Opinion. New York, NY: Harcourt, Brace and Company.Google Scholar
  45. Macer, Darryl. 2005. Ethical, legal and social issues of genetically modifying insect vectors for public health. Insect Biochemistry and Molecular Biology 35 (7): 649–660.  https://doi.org/10.1016/j.ibmb.2005.02.010.Google Scholar
  46. Maisels, Fiona, Samantha Strindberg, Stephen Blake, George Wittemyer, John Hart, Elizabeth A. Williamson, Rostand Aba’a, Gaspard Abitsi, Ruffin D. Ambahe, Fidèl Amsini, Parfait C. Bakabana, Thurston Cleveland Hicks, Rosine E. Bayogo, Martha Bechem, Rene L. Beyers, Anicet N. Bezangoye, Patrick Boundja, Nicolas Bout, Marc Ella Akou, Lambert Bene Bene, Bernard Fosso, Elizabeth Greengrass, Falk Grossmann, Clement Ikamba-Nkulu, Omari Ilambu, Bila-Isia Inogwabini, Fortune Iyenguet, Franck Kiminou, Max Kokangoye, Deo Kujirakwinja, Stephanie Latour, Innocent Liengola, Quevain Mackaya, Jacob Madidi, Bola Madzoke, Calixte Makoumbou, Guy-Aimé Malanda, Richard Malonga, Olivier Mbani, Valentin A. Mbendzo, Edgar Ambassa, Albert Ekinde, Yves Mihindou, Bethan J. Morgan, Prosper Motsaba, Gabin Moukala, Anselme Mounguengui, Brice S. Mowawa, Christian Ndzai, Stuart Nixon, Pele Nkumu, Fabian Nzolani, Lilian Pintea, Andrew Plumptre, Hugo Rainey, Bruno Bokoto de Semboli, Adeline Serckx, Emma Stokes, Andrea Turkalo, Hilde Vanleeuwe, Ashley Vosper, and Ymke Warren. 2013. Devastating decline of forest elephants in central Africa. PLoS One 8 (3): e59469.  https://doi.org/10.1371/journal.pone.0059469.Google Scholar
  47. Malm, Andreas. 2017. L’anthropocène contre l’histoire. In Le réchauffement climatique à l’ère du capital. Paris: La Fabrique.Google Scholar
  48. Moore, Jason W. 2016. Anthropocene or Capitalocene? Nature, history, and the crisis of capitalism. Oakland, CA: PM Press.Google Scholar
  49. Morizot, Baptiste. 2017. Nouvelles alliances avec la terre. Une cohabitation diplomatique avec le vivant. Tracés (33): 73–96.  https://doi.org/10.4000/traces.7001.
  50. National Academies of Sciences, Engineering, and Medicine. 2016. Gene drives on the horizon: Advancing science, navigating uncertainty, and aligning research with public values. Washington: The National Academies Press.  https://doi.org/10.17226/23405.Google Scholar
  51. Nerlich, Brigitte. 2013. Moderation impossible? On hype, honesty and trust in the context of modern academic life. The Sociological Review 61 (S2): 43–57.  https://doi.org/10.1111/1467-954X.12099.Google Scholar
  52. Noble, Charleston, Ben Adlam, George M. Church, Kevin M. Esvelt, and Martin A. Nowak. 2018. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7: e33423.  https://doi.org/10.7554/eLife.33423.Google Scholar
  53. Plumptre, Andrew J., Stuart Nixon, Deo K. Kujirakwinja, Ghislain Vieilledent, Rob Critchlow, Elizabeth A. Williamson, Radar Nishuli, Andrew E. Kirkby, and Jefferson S. Hall. 2016. Catastrophic decline of world’s largest primate: 80% loss of Grauer’s Gorilla (Gorilla beringei graueri) population justifies critically endangered status. PLoS One 11 (10): e0162697.  https://doi.org/10.1371/journal.pone.0162697.Google Scholar
  54. Reeves, R. Guy. 2012. The genetic jungle. GeneWatch 25 (3): 12–13. http://www.councilforresponsiblegenetics.org/GeneWatch/GeneWatchPage.aspx?pageId=418.Google Scholar
  55. Rubenstein, Dustin R., and Daniel I. Rubenstein. 2016. From Pleistocene to trophic rewilding: A wolf in sheep’s clothing. Proceedings of the National Academy of Sciences of the United States of America 113 (1): E1.  https://doi.org/10.1073/pnas.1521757113.Google Scholar
  56. Sander, Jeffry D., and J. Keith Joung. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology 32 (4): 347–355.  https://doi.org/10.1038/nbt.2842.Google Scholar
  57. Seddon, Philip J., Axel Moehrenschlager, and John Ewen. 2014. Reintroducing resurrected species: Selecting DeExtinction candidates. Trends in Ecology & Evolution 29 (3): 140–147.  https://doi.org/10.1016/j.tree.2014.01.007.Google Scholar
  58. Shi, Tian-Qiong, Guan-Nan Liu, Rong-Yu Ji, Kun Shi, Ping Song, Lu-Jing Ren, He Huang, and Xiao-Jun Ji. 2017. CRISPR/Cas9-based genome editing of the filamentous fungi: The state of the art. Applied Microbiology and Biotechnology 101 (20): 7435–7443.  https://doi.org/10.1007/s00253-017-8497-9.Google Scholar
  59. Soulé, Michael E. 1985. What is conservation biology? BioScience 35: 727–234.  https://doi.org/10.2307/1310054.Google Scholar
  60. Tangley, Laura. 1988. Research priorities for conservation. Bioscience 38: 444–448.  https://doi.org/10.2307/1310945.Google Scholar
  61. Thogmartin, Wayne E., Ruscena Wiederholt, Karen Oberhauser, Ryan G. Drum, Jay E. Diffendorfer, Sonia Altizer, Orley R. Taylor, John Pleasants, Darius Semmens, Brice Semmens, Richard Erickson, Kaitlin Libby, and Laura Lopez-Hoffman. 2017. Monarch butterfly population decline in North America: Identifying the threatening processes. Royal Society Open Science 4 (9): 170760.  https://doi.org/10.1098/rsos.170760.Google Scholar
  62. Thomas, Chris D. 2013. The Anthropocene could raise biological diversity. Nature 502 (7469): 7.  https://doi.org/10.1038/502007a.Google Scholar
  63. Thomas, Chris D., Alison Cameron, Rhys E. Green, Michel Bakkenes, Linda J. Beaumont, Yvonne C. Collingham, Barend F.N. Erasmus, Marinez Ferreira de Siqueira, Alan Grainger, Lee Hannah, Lesley Hughes, Brian Huntley, Albert S. van Jaarsveld, Guy F. Midgley, Lera Miles, Miguel A. Ortega-Huerta, A. Townsend Peterson, Oliver L. Phillips, and Stephen E. Williams. 2004. Extinction risk from climate change. Nature 427 (6970): 145–148.  https://doi.org/10.1038/nature02121.Google Scholar
  64. Unckless, Robert L., Andrew G. Clark, and Philipp W. Messer. 2017. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205 (2): 827–841.  https://doi.org/10.1534/genetics.116.197285.Google Scholar
  65. Wagstaff, Keith. 2016. Bill Nye: Could genetic engineering and replicators be the key to colonizing Mars? Forbes, 12 February. https://www.forbes.com/sites/keithwagstaff/2016/02/12/bill-nye-could-geneticengineering-and-replicators-be-the-key-to-colonizing-mars/#2c809eba55fe.
  66. Webber, Bruce L., S. Raghu, and Owain R. Edwards. 2015. Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proceedings of the National Academy of Sciences of the United States of America 112 (34): 10565–10567.  https://doi.org/10.1073/pnas.1514258112.Google Scholar
  67. Wittemyer, George, Joseph M. Northrup, Julian Blanc, Iain Douglas-Hamilton, Patrick Omondi, and Kenneth P. Burnham. 2014. Illegal killing for ivory drives global decline in African elephants. Proceedings of the National Academy of Sciences of the United States of America 111 (36): 13117–13121.  https://doi.org/10.1073/pnas.1403984111.Google Scholar

Copyright information

© National University of Singapore and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.ISEM, Univ Montpellier, CNRS, IRD, EPHEMontpellierFrance

Personalised recommendations