Identifying Landscape Modification using Open Data and Tools: The Charcoal Hearths of the Blue Mountain, Pennsylvania

  • Benjamin P. CarterEmail author
Technical Brief


In this technical brief I demonstrate two methodological points broadly relevant to historical archaeologists. While light detection and ranging (LiDAR), also known as airborne laser scanning (ALS), has been widely used to identify prehistoric archaeological sites, its use in historical archaeology could be expanded. LiDAR data are particularly valuable because they are frequently open access. By coupling open LiDAR data with open source software one can quickly, easily, and inexpensively identify historical landscape modification. I present an illustrative example, the identification of charcoal hearths in Pennsylvania, along with tools and techniques used to carry out the research. This method has allowed us to identify 758 charcoal hearths within a 74 km2 research area along the Blue Mountain of northeastern Pennsylvania.


LiDAR open source software open access data charcoal hearths Blue Mountain, PA FOSS charcoal industry iron industry 


En este documento técnico, demuestro dos puntos metodológicos ampliamente pertinentes para los arqueólogos históricos. Aunque la detección y medición por ondas luminosas (LIDAR, por sus siglas en inglés), que también se conoce como el escaneo láser aerotransportado (ALS), se ha utilizado ampliamente para identificar sitios arqueológicos prehistóricos, su uso en la arqueología histórica podría ampliarse. Los datos LiDAR son particularmente valiosos porque son frecuentemente de acceso abierto. Al combinar los datos LiDAR abiertos con software de fuente abierta se puede identificar de forma rápida, sencilla y económica las modificaciones de paisajes históricos. Presento aquí un ejemplo ilustrativo, la identificación de fogones de carbón en Pensilvania, junto con las herramientas y técnicas que se utilizaron para llevar a cabo la investigación. Este método nos ha permitido identificar 758 fogones de carbón dentro de un área de investigación de 74 km2 a lo largo de Blue Mountain en el noreste de Pensilvania.


Dans ce mémoire technique, je présente deux points méthodologiques largement pertinents pour les archéologues historiques. Tandis que la détection et télémétrie par ondes lumineuses (LiDAR), aussi appelée numérisation atmosphérique au laser (ALS) est intensément utilisée pour identifier les sites archéologiques historiques, son utilisation en archéologie historique pourrait prendre de l’envergure. Les données LiDAR sont particulièrement utiles, car leur accès est souvent ouvert. En couplant les données LiDAR ouvertes à un logiciel ouvert, on pourrait aisément, rapidement et à faible coût identifier les modifications paysagères historiques. Pour illustrer ce concept, je présente l’exemple de l’identification de creusets de charbon en Pennsylvanie, ainsi que les outils et techniques utilisés pour mener à bien la recherche. Cette méthode nous a permis d’identifier 758 creusets dans une aire de recherche de 74 km2 le long de la Blue Mountain, au nord-est de Pennsylvanie aux É.-U.



The author wishes to thank the students at Muhlenberg College who worked on this project. In particular, Heather Lash painstakingly identified the charcoal hearths from the slope analysis. Tim Clarke of the Digital Learning Team at Muhlenberg has supported this work through his deep understanding of the structures and meanings of digital data. I would like to thank the organizers (Ethan Watrall and Lynne Goldstein of Michigan State University), staff, and participants in the Institute on Digital Archaeology Method and Practice (funded by the National Endowment for the Humanities) for creating a dynamic community of archaeologists interested in opening archaeology. Additionally, my work with LASTools was made possible by participation in the National Science Foundation NEON Workshop: Topographic, Geomorphic, and Vegetation Analysis with LiDAR instructed by Chris Crosby (UNAVCO), Ramon Arrowsmith (Arizona State University), Tristan Goulden (NEON), Shelley Petroy (NEON), and Nancy Glenn (Boise State). I would also like to thank the Provost’s Office, the Dean of Digital Learning, and the Sociology and Anthropology Department for support of this project. The author thanks the anonymous peer reviewers who spent their valuable time providing insightful and valuable feedback.


  1. American Society for Photogrammetry and Remote Sensing 2013 LAS Specification Version 1.4 – R13 <>. Accessed 2 January 2019.
  2. Birkinbine, John 1879 The Production of Charcoal for Iron Works. Transactions of the American Institute of Mining Engineers 7:149–158.Google Scholar
  3. Brenckman, Frederick Charles 1913 History of Carbon County, Pennsylvania: Also Containing a Separate Account of the Several Boroughs and Townships in the County, with Biographical Sketches. J. J. Nungesser, Harrisburg, PA.Google Scholar
  4. Carter, Benjamin P. 2018a Blue Mountain Charcoal Project Research Area (Version 0.1.0) [Dataset]. Zenodo <>. Accessed 2 February 2019.
  5. Carter, Benjamin P. 2018b Digital Elevation Model for Blue Mountain Charcoal Research Project (Version 0.1.0) [Dataset]. Zenodo <>. Accessed 2 February 2019.
  6. Carter, Benjamin P. 2018c Hillshade Analysis of “Digital Elevation Model for Blue Mountain Charcoal Research Project” (Version 0.1.0) [Dataset]. Zenodo <>. Accessed 2 February 2019.
  7. Carter, Benjamin P. 2018d Identified Charcoal Hearths from “Slope Analysis of ‘Digital Elevation Model for Blue Mountain Charcoal Research Project’” (Version 0.1.0) [Dataset]. Zenodo <>. Accessed 2 February 2019.
  8. Carter, Benjamin P. 2018e Slope Analysis of “Digital Elevation Model for Blue Mountain Charcoal Research Project” (Version 0.1.0) [Dataset]. Zenodo <>. Accessed 2 February 2019.
  9. Carter, Benjamin P. 2018f Charcoal Hearths along the Blue Mountain of Pennsylvania: Identification of Historic Charcoal Hearths in the Landscape of the Blue Mountain via Analysis of LiDAR. Open Context <>. Accessed 2 February 2019.
  10. Carter, Benjamin P. [2019] Data for Identifying Landscape Modification using Open Data and Tools: The Charcoal Hearths of the Blue Mountain, Pennsylvania. Journal of Open Archaeology Data.Google Scholar
  11. Challis, Keith, Paolo Forlin, and Mark Kincey 2011 A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data. Archaeological Prospection 18(4):279–289.CrossRefGoogle Scholar
  12. Chase, A. F., D. Z. Chase, J. F. Weishampel, J. B. Drake, R. L. Shrestha, K. C. Slatton, J. J. Awe, and W. E. Carter 2011 Airborne LiDAR, Archaeology, and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38(2):387–398.CrossRefGoogle Scholar
  13. Chase, Arlen F., Diane Z. Chase, Christopher T. Fisher, Stephen J. Leisz, and John F. Weishampel 2012 Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proceedings of the National Academy of Sciences 109(32):12916–12921.CrossRefGoogle Scholar
  14. Devereux, B. J., G. S. Amable, P. Crow, and A. D. Cliff 2005 The Potential of Airborne Lidar for Detection of Archaeological Features under Woodland Canopies. Antiquity 79(305):648–660.CrossRefGoogle Scholar
  15. Ducke, Benjamin 2012 Natives of a Connected World: Free and Open Source Software in Archaeology. World Archaeology 44(4):571–579.CrossRefGoogle Scholar
  16. Evans, Damian H., Roland J. Fletcher, Christophe Pottier, Jean-Baptiste Chevance, Dominique Soutif, Boun Suy Tan, Sokrithy Im, Darith Ea, Tina Tin, Samnang Kim, Christopher Cromarty, Stéphane De Greef, Kasper Hanus, Pierre Bâty, Robert Kuszinger, Ichita Shimoda, and Glenn Boornazian 2013 Uncovering Archaeological Landscapes at Angkor Using Lidar. Proceedings of the National Academy of Sciences 110(31):12595–12600.CrossRefGoogle Scholar
  17. Fernandez-Diaz, Juan Carlos, William E. Carter, Ramesh L. Shrestha, and Craig L. Glennie 2014 Now You See It... Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica. Remote Sensing 6(10):9951–10001.CrossRefGoogle Scholar
  18. Fernow, Bernhard E. 1883 Planting in Waste Places. The American Journal of Forestry 1883:153–155.Google Scholar
  19. Fisher, Christopher T., Anna S. Cohen, Juan Carlos Fernández-Diaz, and Stephen J. Leisz 2017 The Application of Airborne Mapping LiDAR for the Documentation of Ancient Cities and Regions in Tropical Regions. Quaternary International 448:129–138.CrossRefGoogle Scholar
  20. Harmon, James M., Mark P. Leone, Stephen D. Prince, and Marcia Snyder 2006 Lidar for Archaeological Landscape Analysis: A Case Study of Two Eighteenth-Century Maryland Plantation Sites. American Antiquity 71(4):649–670.CrossRefGoogle Scholar
  21. Hart, Justin L., Saskia L. van de Gevel, David F. Mann, and Wayne K. Clatterbuck 2008 Legacy of Charcoaling in a Western Highland Rim Forest in Tennessee. The American Midland Naturalist 159(1):238–250.CrossRefGoogle Scholar
  22. Hirsch, Florian, Thomas Raab, William Ouimet, David Dethier, Anna Schneider, and Alexandra Raab 2017 Soils on Historic Charcoal Hearths: Terminology and Chemical Properties. Soil Science Society of America Journal 81(6):1427–1435.CrossRefGoogle Scholar
  23. Huggett, Jeremy 2015 Digital Haystacks: Open Data and the Transformation of Archaeological Knowledge. In Open Source Archaeology: Ethics and Practice, Andrew T. Wilson and Ben Edwards, editors, pp. 6–29. De Gruyter Open, Warsaw, Poland <>. Accessed 2 February 2019.
  24. Johnson, Katharine M., and William B. Ouimet 2014 Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDAR). Journal of Archaeological Science 43:9–20.CrossRefGoogle Scholar
  25. Johnson, Katharine M., and William B. Ouimet 2018 An Observational and Theoretical Framework for Interpreting the Landscape Palimpsest through Airborne LiDAR. Applied Geography 91:32–44.CrossRefGoogle Scholar
  26. Kansa, Eric C., Sarah Whitcher Kansa, and Ethan Watrall (editors) 2011 Archaeology 2.0: New Approaches to Communication and Collaboration. UCLA Cotsen Institute of Archaeology, Los Angeles <>. Accessed 16 February 2019.
  27. Kemper, Jackson 1941 American Charcoal Making in the Era of the Cold-Blast Furnace. History 14. U.S. Department of the Interior; National Park Service, Washington, DC. <>. Accessed 2 February 2019.
  28. Kokalj, Ziga, and Ralf Hesse 2017 Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice. Založba ZRC, Ljubljana, Slovenia.Google Scholar
  29. Mathews, Alfred, and Austin N. Hungerford 1884 History of the Counties of Lehigh and Carbon, in the Commonwealth of Pennsylvania. Everts & Richards, Philadelphia, PA.Google Scholar
  30. McCoy, Mark D., Gregory P. Asner, and Michael W. Graves 2011 Airborne Lidar Survey of Irrigated Agricultural Landscapes: An Application of the Slope Contrast Method. Journal of Archaeological Science 38(9):2141–2154.CrossRefGoogle Scholar
  31. McVarish, Douglas C. 2008 American Industrial Archaeology: A Field Guide. Left Coast Press, Walnut Creek, CA.Google Scholar
  32. Opitz, Rachel S., Krysta Ryzewski, John F. Cherry, and Brenna Moloney 2015 Using Airborne LiDAR Survey to Explore Historic-Era Archaeological Landscapes of Montserrat in the Eastern Caribbean. Journal of Field Archaeology 40(5):523–541.CrossRefGoogle Scholar
  33. Orengo, Hector 2015 Open Source GIS and Geospatial Software in Archaeology: Towards Their Integration into Everyday Archaeological Practice. In Open Source Archaeology: Ethics and Practice, Andrew T. Wilson and Ben Edwards, editors, pp. 64–82. De Gruyter Open, Warsaw, Poland <>. Accessed 2 February 2019.
  34. Pennsylvania Department of Conservation and Natural Resources 2018a PAMAP. Pennsylvania Department of Conservation and Natural Resources <>. Accessed 2 February 2019.
  35. Pennsylvania Department of Conservation and Natural Resources 2018b PAMAP Lidar Elevation Data. Pennsylvania Department of Conservation and Natural Resources <>. Accessed 2 February 2019.
  36. Raab, A., M. Takla, T. Raab, A. Nicolay, A. Schneider, H. Rösler, K.-U. Heußner, and E. Bönisch 2015 Pre-Industrial Charcoal Production in Lower Lusatia (Brandenburg, Germany): Detection and Evaluation of a Large Charcoal-Burning Field by Combining Archaeological Studies, GIS-Based Analyses of Shaded-Relief Maps and Dendrochronological Age Determination. Quaternary International 367:111–122.CrossRefGoogle Scholar
  37. Raab, Thomas, Florian Hirsch, William Ouimet, Katharine M. Johnson, David Dethier, and Alexandra Raab 2017 Architecture of Relict Charcoal Hearths in Northwestern Connecticut, USA. Geoarchaeology 32(4):502–510.CrossRefGoogle Scholar
  38. Register of Professional Archaeologists 2018 Code of Conduct. RPA Headquarters, Baltimore, MD <>. Accessed 2 February 2019.
  39. Schallenberg, Richard H. 1981 Charcoal Iron: The Coal Mines of the Forest. In Material Culture of the Wooden Age, Brooke Hindle, editor, pp. 271–299. Sleepy Hollow Press, Tarrytown, NY.Google Scholar
  40. Schneider, Anna, Melanie Takla, Alexander Nicolay, Alexandra Raab, and Thomas Raab 2015 A Template-Matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. Archaeological Prospection 22(1):45–62.CrossRefGoogle Scholar
  41. Smith, Matthew Longshore, and Ruhiya Seward 2017 Openness as Social Praxis. First Monday 22(4) <>. Accessed 2 February 2019.
  42. Society for American Archaeology 1996 Principles of Archaeological Ethics. Society for American Archaeology, Ethics in Professional Archaeology <>. Accessed 2 February 2019.
  43. Society for Historical Archaeology 2015 SHA Ethics Principles. Society for Historical Archaeology <>. Accessed 2 February 2019.
  44. Strachan, Scotty, Franco Biondi, Susan G. Lindström, Robert McQueen, and Peter E. Wig 2013 Application of Dendrochronology to Historical Charcoal-Production Sites in the Great Basin, United States. Historical Archaeology 47(4):103–119.CrossRefGoogle Scholar
  45. Straka, Thomas J. 2014 Historic Charcoal Production in the US and Forest Depletion: Development of Production Parameters. Advances in Historical Studies 03(02):104–114.CrossRefGoogle Scholar
  46. Straka, Thomas J., and Wayne C. Ramer 2010 History on the Road: Hopewell Furnace National Historic Site. Forest History Today Spring/Fall:58–62.Google Scholar
  47. Swank, James Moore 1892 History of the Manufacture of Iron in All Ages: And Particularly in the United States from Colonial Time to 1891, 2nd edition. American Iron and Steel Association, Philadelphia, PA.Google Scholar
  48. Walker, Joseph E. 1966 Hopewell Village: A Social and Economic History of an Iron-Making Community. University of Pennsylvania Press, Philadelphia.CrossRefGoogle Scholar
  49. Werbrouck, I., M. Antrop, V. Van Eetvelde, C. Stal, Ph. De Maeyer, M. Bats, J. Bourgeois, M. Court-Picon, Ph. Crombé, J. De Reu, Ph. De Smedt, P. A. Finke, M. Van Meirvenne, J. Verniers, and A. Zwertvaegher 2011 Digital Elevation Model Generation for Historical Landscape Analysis Based on LiDAR Data, a Case Study in Flanders (Belgium). Expert Systems with Applications 38(7):8178–8185.CrossRefGoogle Scholar
  50. Wettstaed, James R. 2003 Cutting It Back and Burning It Black: Archaeological Investigations of Charcoal Production in the Missouri Ozarks. The Journal of the Society for Industrial Archeology 29(2):29–46.Google Scholar
  51. Wigginton, Eliot (editor) 1979 Foxfire 5. Anchor Books, New York, NY.Google Scholar
  52. Wilson, Andrew T., and Ben Edwards (editors) 2015 Open Source Archaeology: Ethics and Practice. De Gruyter Open, Warsaw, Poland <>. Accessed 2 February 2019.
  53. Zeier, Charles D. 1987 Historic Charcoal Production near Eureka, Nevada: An Archaeological Perspective. Historical Archaeology 21(1):81–101.CrossRefGoogle Scholar

Copyright information

© Society for Historical Archaeology 2019

Authors and Affiliations

  1. 1.Department of Sociology and AnthropologyMuhlenberg CollegeAllentownU.S.A.

Personalised recommendations