Advertisement

Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age

  • 69 Accesses

Abstract

Digital transformation in manufacturing is one of the key megatrends in the development of the global economy and society. Three-dimensional (3D) printing is a transformative digital technology poised to disrupt manufacturing and supply chains across major industries. Here we critically examine relevant insights into current and emerging applications of plasma nanotechnology in printing, including 3D printing. Plasma devices operated at atmospheric pressure coupled with printing processes may help strengthen 3D printing as an emerging fabrication technology that morphs diverse metal powders, polymers, plastics and other materials into digitally designed 3D shapes and patterns. We discuss how plasma applications may help overcome current limitations of 3D printing in various fields, e.g., limitations of sculpting composite materials, lack of mechanical strength and the need for post-processing. Our key focus is on the challenges, opportunities and physical mechanisms of the use of 3D printing in nano-manufacturing, defined as the fabrication of nanoscale building blocks, such as nanoparticles and nanomaterials; their assembly into higher-order (microscale) structures; and the integration of these structures into larger (macro-) scale devices and systems by controlling energy and matter at the nanoscale. Moreover, we discuss the physico-chemical mechanisms that result in highly-conformal deposition of nanostructured materials onto 3D surfaces with microscopic (and possibly nanoscale) control of textures and inter-layer crosslinking, without the need for additional heating. We further highlight the opportunities that arise for plasma nanotechnology to synergize with the emerging digital transformation platforms in surface micro- and nano-structuring using polymers, metals, metallic alloys, and other materials. These new findings in plasma-digital nanoscale fabrication may lead to a new digital manufacturing platform suitable for a number of cutting-edge applications in electronic, sensing and energy devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 85

This is the net price. Taxes to be calculated in checkout.

Fig. 1

(Diagram adapted from sculpteo.com (Sculpteo 2017). Image sources: Additive manufacturing—k3syspro.com Augmented reality—Microsoft, Big data—stu.edu (St. Thomas University), Computer numerical control—ZPS America, Smart sensing—SICK.com, Robotics—ABB, Cloud—Tonex.com and Computer aided design/process simulation—ntnu.edu (Norwegian University of Science and Technology) and bobcad.com (BobCADCAM Inc.))

Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Image source: Fraunhofer IST)

Fig. 6

Image Sources (from left to right): Relyon Plasma, Essentium3d and Innophysics

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Image source https://www.empa.ch/web/coating-competence-center

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

References

  1. L. Abhinandan, A. Hollander, Localized deposition of hydrocarbon using plasma activated chemical vapour deposition. Thin Solid Films 457, 241–245 (2004)

  2. T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing. Appl. Surf. Sci. 390, 489–496 (2016)

  3. G. Adams, J. Banks, C. Frazier, U. Toodi, M. Lagoudas, in 2018 NASA BIG Idea Challenge: Utilization of Solar Cell Umbrellas to Provide Long-Term Photovoltaic Power on Mars. Texas A&M University (2018)

  4. J. Alaman, R. Alicante, J.I. Pena, C. Sanchez-Somolinos, Inkjet printing of functional materials for optical and photonic applications. Materials 2016, 9 (2016)

  5. R.J. Anthony, K.Y. Cheng, Z.C. Holman, R.J. Holmes, U.R. Kortshagen, An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. Nano Lett. 12, 2822–2825 (2012)

  6. I. Bahnini, M. Rivette, A. Rechia, A. Siadat, A. Elmesbahi, Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Tech. 97, 147–161 (2018)

  7. C.R. Barry, N.Z. Lwin, W. Zheng, H.O. Jacobs, Printing nanoparticle building blocks from the gas phase using nanoxerography. Appl. Phys. Lett. 83, 5527–5529 (2003)

  8. C.R. Barry, J. Gu, H.O. Jacobs, Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution. Nano Lett. 5, 2078–2084 (2005)

  9. T. Belmonte, T. Gries, R.P. Cardoso, G. Arnoult, F. Kosior, G. Henrion, Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool. Plasma Sourc. Sci. Technol. 2011, 20 (2011a)

  10. T. Belmonte, G. Henrion, T. Gries, Nonequilibrium atmospheric plasma deposition. J. Therm. Spray Technol. 20, 744–759 (2011b)

  11. J.P. Boeuf, Y. Lagmich, T. Unfer, T. Callegari, L.C. Pitchford, Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D Appl. Phys. 40, 652–662 (2007)

  12. A. Boileau, T. Gries, C. Noel, R.P. Cardoso, T. Belmonte, Sub-micro a-C: H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition. J. Phys. D Appl. Phys. 49, 6 (2016)

  13. A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 6 (2009)

  14. M.I. Boulos, The role of transport phenomena and modeling in the development of thermal plasma technology. Plasma Chem. Plasma 36, 3–28 (2016)

  15. T. Bret, I. Utke, C. Gaillard, P. Hoffmann, Periodic structure formation by focused electron-beam-induced deposition. J. Vac. Sci. Technol. B 22, 2504–2510 (2004)

  16. D. Chakravarty, C.S. Tiwary, C.F. Woellner, S. Radhakrishnan, S. Vinod, S. Ozden, P.A.D. Autreto, S. Bhowmick, S. Asif, S.A. Mani et al., 3D porous graphene by low-temperature plasma welding for bone implants. Adv. Mater. 28, 8959–8967 (2016)

  17. K. Cheng, M.H. Yang, W.W.W. Chiu, C.Y. Huang, J. Chang, T.F. Ying, Y. Yang, Ink-jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature. Macromol. Rapid Commun. 26, 247–264 (2005)

  18. J.W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Tech. 49, 543–551 (2010)

  19. L. Chong, S. Ramakrishna, S. Singh, A review of digital manufacturing-based hybrid additive manufacturing processes. Int. J. Adv. Manuf. Tech. 95, 2281–2300 (2018)

  20. R. Clark, K. Tapily, K.H. Yu, T. Hakamata, S. Consiglio, D. O'Meara, C. Wajda, J. Smith, G. Leusink, Perspective: new process technologies required for future devices and scaling. Appl. Mater. 6, 5 (2018)

  21. A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv Mater 27(37), 5523–5527 (2015)

  22. V. Colombo, E. Ghedini, P. Sanibondi, Three-dimensional investigation of particle treatment in an RF thermal plasma with reaction chamber. Plasma Sourc. Sci. T 19, 6 (2010)

  23. P. Cools, C. Mota, I. Lorenzo-Moldero, R. Ghobeira, N. De Geyter, L. Moroni, R. Morent, Acrylic acid plasma coated 3D scaffolds for cartilage tissue engineering applications. Sci Rep. UK 8, 8 (2018)

  24. E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed. Microdev. 15, 311–319 (2013)

  25. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit. Manuf. 22, 672–686 (2018)

  26. R. d'Agostino, P. Favia, C. Oehr, M.R. Wertheimer, Low-temperature plasma processing of materials: past, present, and future. Plasma Process Polym. 2, 7–15 (2005)

  27. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203–213 (2004)

  28. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)

  29. A. Dey, S. Krishnamurthy, J. Bowen, D. Nordlund, M. Meyyappan, R.P. Gandhiraman, Plasma jet printing and in situ reduction of highly acidic graphene oxide. ACS Nano 12, 5473–5481 (2018)

  30. Essentium, https://3dprinting.com/news/essentiums-fusebox-plasma-3d-printing (2017)

  31. M. Exner, A. Horn, P. Streek, F. Regenfuss, R. Ullmann, Ebert, laser micro sintering—a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Proc. Monogr. Eng. Waste 2008, 491–499 (2008)

  32. R.D. Farahani, M. Dube, D. Therriault, Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016)

  33. S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345, 644–646 (2014)

  34. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

  35. H. Forster, C. Wolfrum, W. Peukert, Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J. Nanopart Res. 14, 5 (2012)

  36. J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, P.D. Rack, Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10, 6163–6172 (2016)

  37. Fraunhofer Institute for Applied Polymer Research IAP and Thin Films IST, Press release (2018). https://www.fraunhofer.de/content/dam/zv/en/press-media/2018/december/research-news/rn12-2018-IST-precisely-fitting-bone-implants-from-the-printer.pdf

  38. K. Fricke, H. Steffen, T. von Woedtke, K. Schroder, K.D. Weltmann, High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process Polym. 8, 51–58 (2011)

  39. A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo, A.D. Valentine, C.J. Walsh, J.A. Lewis, Capacitive soft strain sensors via multicore-shell fiber printing. Adv Mater 27(15), 2440–2446 (2015)

  40. P. Galliker, J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, D. Poulikakos, Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat. Commun. 3, 5 (2012)

  41. R.P. Gandhiraman, E. Singh, D.C. Diaz-Cartagena, D. Nordlund, J. Koehne, M. Meyyappan, Plasma jet printing for flexible substrates. Appl. Phys. Lett. 108, 8 (2016)

  42. M. Gavagnin, H.D. Wanzenboeck, S. Wachter, M.M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. Stoger-Pollach, E. Bertagnolli, Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS Appl. Mater. Inter. 6, 20254–20260 (2014)

  43. H.C. George, T.A. Orlova, A.O. Orlov, G.L. Snider, Novel method for fabrication of nanoscale single-electron transistors: electron beam induced deposition of Pt and atomic layer deposition of tunnel barriers. J. Vac. Sci. Technol. B 29, 5 (2011)

  44. M.K. Ghatkesar, H.H.P. Garza, F. Heuck, U. Staufer, Scanning probe microscope-based fluid dispensing. Micromach. Basel 5, 954–1001 (2014)

  45. S.L. Girshick, Aerosol processing for nanomanufacturing. J. Nanopart Res. 10, 935–945 (2008)

  46. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)

  47. N.Y.M. Gonzalez, M. El Morsli, P. Proulx, Production of nanoparticles in thermal plasmas: a model including evaporation nucleation, condensation, and fractal aggregation. J. Therm. Spray Technol. 17, 533–550 (2008)

  48. P. Grenson, O. Leon, P. Reulet, B. Aupoix, Investigation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number: an extensive experimental approach. Int. J. Heat Mass Trans. 102, 801–815 (2016)

  49. J.Y. Guo, X.B. Fan, R. Dolbec, S.W. Xue, J. Jurewicz, M. Boulos, Development of nanopowder synthesis using induction plasma. Plasma Sci. Technol. 12, 188–199 (2010)

  50. D.J. Guo, R. Kometani, S. Warisawa, S. Ishihara, Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B 31, 5 (2013)

  51. J. Hafiz, X. Wang, R. Mukherjee, W. Mook, C.R. Perrey, J. Deneen, J.V.R. Heberlein, P.H. McMurry, W.W. Gerberich, C.B. Carter et al., Hypersonic plasma particle deposition of Si–Ti–N nanostructured coatings. Surf. Coat. Tech. 188, 364–370 (2004)

  52. J. Hafiz, R. Mukherjee, X. Wang, J.V.R. Heberlein, P.H. McMurry, S.L. Girshick, Analysis of nanostructured coatings synthesized by ballistic impaction of nanoparticles. Thin Solid Films 515, 1147–1151 (2006a)

  53. J. Hafiz, R. Mukherjee, X. Wang, P.H. McMurry, J.V.R. Heberlein, S.L. Girshick, Hypersonic plasma particle deposition—a hybrid between plasma spraying and vapor deposition. J. Therm. Spray Technol. 15, 822–826 (2006b)

  54. H. Hartl, Y.R. Guo, K. Ostrikov, Y.B. Xian, J. Zheng, X.G. Li, K.E. Fairfull-Smith, J. MacLeod, Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Adv. 9, 2848–2856 (2019)

  55. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)

  56. L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29, 5 (2017)

  57. A. Hollander, L. Abhinandan, Localized deposition by mu-jet-CVD. Surf. Coat. Tech. 174, 1175–1177 (2003)

  58. J. Hong, S. Yick, E. Chow, A. Murdock, J. Fang, D.H. Seo, A. Wolff, Z. Han, T. van der Laan, A. Bendavid et al., Direct plasma printing of nano-gold from an inorganic precursor. J. Mater. Chem. C 7, 8 (2019)

  59. J.L. Hu, H.P. Meng, G.Q. Li, S.I. Ibekwe, A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21, 5 (2012)

  60. K.I. Hunter, J.T. Held, K.A. Mkhoyan, U.R. Kortshagen, Nonthermal plasma synthesis of core/shell quantum dots: strained Ge/Si nanocrystals. ACS Appl. Mater. Inter. 9, 8263–8270 (2017)

  61. Innophysics, https://www.innophysics.nl/index.php/projects/plasmaprint-ald (2019)

  62. E. Jager, J. Schmidt, A. Pfuch, S. Spange, O. Beier, N. Jager, O. Jantschner, R. Daniel, C. Mitterer, Antibacterial silicon oxide thin films doped with zinc and copper grown by atmospheric pressure plasma chemical vapor deposition. Nanomaterials 9, 5 (2019)

  63. P.I. John, Plasma Sciences and the Creation of Wealth (Tata McGraw Hill Education, New York City, 2005)

  64. K.S. Joshy, S. Snigdha, S. Thomas, Plasma Modified Polymeric Materials for Scaffolding of Bone Tissue Engineering (Elsevier, Amsterdam, 2019)

  65. K.S. Kim, T.H. Kim, Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. Appl. Phys. 125, 5 (2019)

  66. D.B. Kolesky, R.L. Truby, A. Sydney Gladman, T.A. Busbee, K.A. Homan, J.A. Lewis, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19), 3124–3130 (2014)

  67. H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Bottger, A. Kuligk, C. Liguda, M. Eich, Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared. Microelectron Eng. 57–8, 995–1001 (2001)

  68. U. Kortshagen, U. Bhandarkar, Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60, 887–898 (1999)

  69. U.R. Kortshagen, R.M. Sankaran, R.N. Pereira, S.L. Girshick, J.J. Wu, E.S. Aydil, Nonthermal plasma synthesis of nanocrystals: fundamental principles. Mater. Appl. Chem. Rev. 116, 11061–11127 (2016)

  70. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Three-dimensional printing of transparent fused silica glass. Nature 544, 337 (2017)

  71. N.J. Kramer, R.J. Anthony, M. Mamunuru, E.S. Aydil, U.R. Kortshagen, Plasma-induced crystallization of silicon nanoparticles. J. Phys. D Appl. Phys. 47, 5 (2014)

  72. N.J. Kramer, E.S. Aydil, U.R. Kortshagen, Requirements for plasma synthesis of nanocrystals at atmospheric pressures. J. Phys. D Appl. Phys. 48, 7 (2015)

  73. A. Kumar, S. Kang, C. Larriba-Andaluz, H. Ouyang, C.J. Hogan, R.M. Sankaran, Ligand-free Ni nanocluster formation at atmospheric pressure via rapid quenching in a microplasma process. Nanotechnology 25, 5 (2014)

  74. S. Kyung, Y. Lee, C. Kim, J. Lee, G. Yeom, Deposition of carbon nanotubes by capillary-type atmospheric pressure PECVD. Thin Solid Films 506, 268–273 (2006)

  75. A. Lazea-Stoyanova, A. Vlad, A.M. Vlaicu, V.S. Teodorescu, G. Dinescu, Synthesis of copper particles by non-thermal atmospheric pressure plasma jet. Plasma Process Polym. 12, 705–709 (2015)

  76. H.H. Lee, K.S. Chou, K.C. Huang, Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436–2441 (2005)

  77. S.W. Lee, D. Liang, X.P.A. Gao, R.M. Sankaran, Direct writing of metal nanoparticles by localized plasma electrochemical reduction of metal cations in polymer films. Adv. Funct. Mater. 21, 2155–2161 (2011)

  78. B.B. Lewis, M.G. Stanford, J.D. Fowlkes, K. Lester, H. Plank, P.D. Rack, Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition. Beilstein J Nanotech. 6, 907–918 (2015)

  79. M.M. Ling, Z.N. Bao, Thin film deposition, patterning, and printing in organic thin film transistors. Chem Mater. 16, 4824–4840 (2004)

  80. Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012)

  81. M.F. Mabrook, C. Pearson, A.S. Jombert, D.A. Zeze, M.C. Petty, The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon 47, 752–757 (2009)

  82. K. Mackie, M. Gordon, Microplasma-based deposition of functional nanomaterials for energy storage applications. Abstr. Pap. Am. Chem. S 253, 8 (2017)

  83. K.E. Mackie, A.C. Pebley, M.M. Butala, J.P. Zhang, G.D. Stucky, M.J. Gordon, Microplasmas for direct, substrate-independent deposition of nanostructured metal oxides. Appl. Phys. Lett. 109, 8 (2016)

  84. S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Silver nanoparticles as pigments for water-based ink-jet inks. Chem. Mater. 15, 2208–2217 (2003)

  85. P. Maguire, D. Rutherford, M. Macias-Montero, C. Mahony, C. Kelsey, M. Tweedie, F. Perez-Martin, H. McQuaid, D. Diver, D. Mariottit, Continuous in-flight synthesis for on-demand delivery of ligand-free colloidal gold nanoparticles. Nano Lett. 17, 1336–1343 (2017)

  86. R.M. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Berlin, 2018)

  87. A. Mameli, Y.H. Kuang, M. Aghaee, C.K. Ande, B. Karasulu, M. Creatore, A.J.M. Mackus, W.M.M. Kessels, F. Roozeboornt, Area-selective atomic layer deposition of In2O3: H Using a mu-plasma printer for local area activation. Chem. Mater. 29, 921–925 (2017)

  88. L. Mangolini, U. Kortshagen, Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 19, 2513 (2007)

  89. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005)

  90. Y.Q. Mao, K. Yu, M.S. Isakov, J.T. Wu, M.L. Dunn, H.J. Qi, Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. UK 5, 8 (2015)

  91. T. Matsoukas, M. Russell, Particle charging in low-pressure plasmas. J. Appl. Phys. 77, 4285–4292 (1995)

  92. R. Maurau, N.D. Boscher, S. Olivier, S. Bulou, T. Belmonte, J. Dutroncy, T. Sindzingre, P. Choquet, Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surf. Coat. Tech. 232, 159–165 (2013)

  93. D. Merche, N. Vandencasteele, F. Reniers, Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520, 4219–4236 (2012)

  94. I. Michelakaki, N. Boukos, D.A. Dragatogiannis, S. Stathopoulos, C.A. Charitidis, D. Tsoukalas, Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition. Beilstein J. Nanotech. 9, 1868–1880 (2018)

  95. S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.W. Lee, Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 8 (2013)

  96. S. Mohr, O. Khan, 3D printing and its disruptive impacts on supply chains of the future. Technol. Innov. Manag. 5, 20–25 (2015)

  97. I. Motrescu, M. Nagatsu, Nanocapillary atmospheric pressure plasma jet: a tool for ultrafine maskless surface modification at atmospheric pressure. ACS Appl. Mater. Inter. 8, 12528–12533 (2016)

  98. K. Murakami, M. Takai, Nano electron source fabricated by beam-induced deposition and its unique feature. Microelectron Eng. 132, 74–82 (2015)

  99. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28, 1–14 (2012)

  100. T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc Natl Acad Sci 112(40), 12293–12298 (2015)

  101. S. Ohno, M. Uda, Preparation for ultrafine particles of Fe–Ni Fe–Cu and Fe–Si alloys by hydrogen plasma-metal reaction. J. Jpn. I Method 53, 946–952 (1989)

  102. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Large area electronics using printing, methods. Proc. IEEE 93, 1321–1329 (2005)

  103. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C. Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis et al., High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782 (2007)

  104. S. Park, U. Cvelbar, W. Choe, S.Y. Moon, The creation of electric wind due to the electrohydrodynamic force. Nat. Commun. 9, 7 (2018)

  105. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, U.S. Schubert, Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% Bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993–3998 (2012)

  106. H. Plank, C. Gspan, M. Dienstleder, G. Kothleitner, F. Hofer, The influence of beam defocus on volume growth rates for electron beam induced platinum deposition. Nanotechnology 19, 8 (2008)

  107. Relyon plasma, https://www.relyon-plasma.com/maximum-surface-quality-in-3d-printing (2019)

  108. P.D. Rack, J.D. Fowlkes, S.J. Randolph, In situ probing of the growth and morphology in electron-beam-induced deposited nanostructures. Nanotechnology 18, 8 (2007)

  109. C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138–146 (2012)

  110. C. Richmonds, R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl. Phys. Lett. 93, 8 (2008)

  111. C. Richmonds, M. Witzke, B. Bartling, S.W. Lee, J. Wainright, C.C. Liu, R.M. Sankaran, Electron-transfer reactions at the plasma-liquid interface. J. Am. Chem. Soc. 133, 17582–17585 (2011)

  112. P. Richner, S.J.P. Kress, D.J. Norris, D. Poulikakos, Charge effects and nanoparticle pattern formation in electrohydrodynamic nanodrip printing of colloids. Nanoscale 8, 6028–6034 (2016)

  113. S. Sanaur, A. Whalley, B. Alameddine, M. Carnes, C. Nuckolls, Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors. Org. Electron. 7, 423–427 (2006)

  114. V. Satulu, M.D. Ionita, S. Vizireanu, B. Mitu, G. Dinescu, Plasma processing with fluorine chemistry for modification of surfaces wettability. Molecules 21, 8 (2016)

  115. J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, D. Poulikakos, Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833–840 (2016)

  116. M. Schwentenwein, J. Homa, Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Tech. 12, 1–7 (2015)

  117. Sculpteo, Digital manufacturing. https://www.industryweek.com/technology-and-iiot/article/21995642/digital-manufacturing-the-factory-of-the-future-is-here-today (2017)

  118. C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus, Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater. 17, 997 (2005)

  119. J.H. Seo, B.G. Hong, Thermal plasma synthesis of nano-sized powders. Nucl. Eng. Technol. 44, 9–20 (2012)

  120. S.K. Seol, D. Kim, S. Lee, J.H. Kim, W.S. Chang, J.T. Kim, Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small 11, 3896–3902 (2015)

  121. M. Shigeta, A.B. Murphy, Thermal plasmas for nanofabrication. J. Phys. D Appl. Phys. 44, 8 (2011)

  122. Y. Shimizu, Diameter control of gold nanoparticles synthesized in gas phase using atmospheric-pressure H-2/Ar plasma jet and gold wire as the nanoparticle source: control by varying the H-2/Ar mixture ratio. AIP Adv. 7, 8 (2017)

  123. Y. Shimizu, T. Sasaki, T. Ito, K. Terashima, N. Koshizaki, Fabrication of spherical carbon via UHF inductively coupled microplasma CVD. J. Phys. D Appl. Phys. 36, 2940–2944 (2003)

  124. Y. Shimizu, K. Kawaguchi, T. Sasaki, N. Koshizaki, Generation of room-temperature atmospheric H-2/Ar microplasma jet driven with pulse-modulated ultrahigh frequency and its application to gold nanoparticle preparation. Appl. Phys. Lett. 94, 8 (2009)

  125. K. Silmy, A. Hollander, A. Dillmann, J. Thomel, Micro-jet plasma CVD with HMDSO/O-2. Surf. Coat. Tech. 200, 368–371 (2005)

  126. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

  127. M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl. Acad. Sci. USA 113, 6137–6142 (2016)

  128. M.G. Stanford, B.B. Lewis, J.H. Noh, J.D. Fowlkes, P.D. Rack, Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits. ACS Appl. Mater. Inter. 7, 19579–19588 (2015)

  129. A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016)

  130. N. Stutzmann, R.H. Friend, H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)

  131. Y. Sui, Y. Dai, C.C. Liu, R.M. Sankaran, C.A. ZormanSui, A new class of low-temperature plasma-activated, inorganic salt-based particle-free inks for inkjet printing metals. Adv. Mater. Technol. 2019, 1900119 (2019)

  132. J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Tech. Electron Pack. 25, 26–33 (2002)

  133. T. Takai, H. Nakao, F. Iwata, Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt. Express 22, 28109–28117 (2014)

  134. V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscuna, D. Sanvitto, A. Passaseo, Three-dimensional nanohelices for chiral photonics. Appl. Phys. A Mater. 122, 8 (2016)

  135. Tekna, http://www.tekna.com/news/tekna-announces-the-market-launch-of-new-spherical-aluminum-alloy-powders-for-additive-manufacturing (2018)

  136. M. Thomas, J. Borris, A. Dohse, M. Eichler, A. Hinze, K. Lachmann, K. Nagel, and C. P. Klages, Plasma printing and related techniques—patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym. 9, 1086–1103 (2012)

  137. M. Thomson, J.L. Hodgkinson, D.W. Sheel, Control of zinc oxide surface structure using combined atmospheric pressure-based CVD growth and plasma etching. Surf. Coat. Tech. 230, 190–195 (2013)

  138. S. Tibbits, 4d printing: multi-material shape change. Archit. Design 84, 116–121 (2014)

  139. R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016)

  140. F. Ullmann, J. Bielecki, Synthesis in the biphenyl series (I Announcement). Ber. Dtsch Chem. Ges. 34, 2174–2185 (1901)

  141. M. Vaezi, H. Seitz, S.F. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Tech. 67, 1721–1754 (2013)

  142. R. van Hout, V. Rinsky, Y.G. Grobman, Experimental study of a round jet impinging on a flat surface: flow field and vortex characteristics in the wall jet. Int. J. Heat Fluid. 70, 41–58 (2018)

  143. P. Verhoeven, A. Stevens, J. P. Schalken, M. Soltani, A. Mäntysalo, Digital printing with micro plasmas and its effects on surface wettability. 28th international conference on surface modification technologies, 2014 Tampre. Conference proceedings (2014), pp. 421–431

  144. R.O.F. Verkuijlen, M.H.A. van Dongen, A.A.E. Stevens, J. van Geldrop, J.P.C. Bernards, Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and mu Plasma printing. Appl. Surf. Sci. 290, 381–387 (2014)

  145. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Additive manufacturing of 3D nano-architected metals. Nat Commun. 2018, 9 (2018)

  146. X.L. Wang, A. Gidwani, S.L. Girshick, P.H. McMurry, Aerodynamic focusing of nanoparticles: II Numerical simulation of particle motion through aerodynamic lenses. Aerosol. Sci. Tech. 39, 624–636 (2005a)

  147. X.L. Wang, F.E. Kruis, P.H. McMurry, Aerodynamic focusing of nanoparticles: I guidelines for designing aerodynamic lenses for nanoparticles. Aerosol. Sci. Tech. 39, 611–623 (2005b)

  148. J.Z. Wang, J. Gu, F. Zenhausem, H. Sirringhaus, Low-cost fabrication of submicron all polymer field effect transistors. Appl. Phys. Lett. 88, 6 (2006)

  149. D.Z. Wang, W. Zha, L. Feng, Q. Ma, X.M. Liu, N. Yang, Z. Xu, X.J. Zhao, J.S. Liang, T.Q. Ren et al., Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes. J. Micromech. Microeng. 26, 6 (2016a)

  150. M. Wang, P. Favi, X.Q. Cheng, N.H. Golshan, K.S. Ziemer, M. Keidar, T.J. Webster, Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomater. 46, 256–265 (2016b)

  151. T. Wei, J. Ruan, Z.J. Fan, G.H. Luo, F. Wei, Preparation of a carbon nanotube film by ink-jet printing. Carbon 45, 2712–2716 (2007)

  152. K.D. Weltmann, J.F. Kolb, M. Holub, D. Uhrlandt, M. Simek, K. Ostrikov, S. Hamaguchi, U. Cvelbar, M. Cernak, B. Locke et al., The future for plasma science and technology. Plasma Process Polym. 2019, 16 (2019)

  153. J. Wienand, A. Riedelsheimer, B. Weigand, Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. Eur. J. Mech. B Fluid 61, 210–217 (2017)

  154. J. Xu, C. Zhong, C. Fu, Novel method for printing high-quality metal wires. SPIE Newsroom (2007)

  155. Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018)

  156. S. Yick, Z.J. Han, K. Ostrikov, Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chem. Commun. 49, 2861–2863 (2013)

  157. Z. Yin, Y. Huang, Y. Duan, H. Zhang, Electrohydrodynamic Direct-writing for Flexible Electronic Manufacturing (Springer, Berlin, 2018)

  158. R.M. Young, E. Pfender, generation and behavior of fine particles in thermal plasmas—a review. Plasma Chem. Plasma P 5, 1–37 (1985)

  159. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002)

  160. R. Zimmermann, A. Pfuch, K. Horn, J. Weisser, A. Heft, M. Roder, R. Linke, M. Schnabelrauch, A. Schimanski, An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (CCVD) in an economic way. Plasma Process Polym. 8, 295–304 (2011)

Download references

Acknowledgements

We sincerely acknowledge the efforts of all researchers who have worked in any of the relevant areas and apologize if any relevant works were not included due to the specific focus and length limits of this article. This work was performed under the CSIRO-QUT Joint Laboratories Agreement. J. H. and B. A. gratefully acknowledge funding by the CSIRO Research Plus Postdoctoral Fellowship scheme. P. J. C. and K. O. thank the Australian Research Council for partial support.

Author information

Correspondence to K. Ostrikov.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Murphy, A.B., Ashford, B. et al. Plasma-digital nexus: plasma nanotechnology for the digital manufacturing age. Rev. Mod. Plasma Phys. 4, 1 (2020) doi:10.1007/s41614-019-0039-8

Download citation

Keywords

  • Plasma printing
  • Plasma nanotechnology
  • Additive manufacturing
  • Digital technologies