Advertisement

Theoretical models for unstable IAWs and nonlinear structures in the upper ionosphere

  • H. Saleem
  • S. Ali ShanEmail author
Review Paper
  • 8 Downloads

Abstract

Physical mechanisms are discussed for the excitation of ion-acoustic waves (IAWs) by field-aligned shear flow of ions and parallel current produced by electrons in the upper ionospheric oxygen hydrogen plasma within auroral latitudes. Theoretical models are presented for the formation of solitary structures by nonlinear IAWs. It is pointed out that the small concentration of hydrogen ions in the oxygen plasma should not be ignored, because it plays important role in the linear instability of IAWs and in determining the size of the nonlinear electrostatic structures. The growth rates of IAWs and size of nonlinear structures vary with altitude, because both depend upon the density ratio of oxygen-to-hydrogen ions along with other parameters. Current-driven electrostatic ion-acoustic waves are studied using kinetic theory which shows that parallel current produces these waves if the concentration of protons is very small about 4% or lesser in the presence of field-aligned shear flow of both kind of ions. Fluid theory is used to look for shear flow-driven instabilities and formation of nonlinear structures ignoring ion temperature effects in this plasma where Freja observations indicate \(T_{i}\approx \) (0.3–0.1)\(T_{e}\). Effects of nonthermal electrons and density gradient on the instabilities and size of the structures are also pointed out.

Notes

Acknowledgements

One of the authors, Dr. Hamid Saleem is grateful to the Higher Education Commission (HEC), Pakistan, for providing partial support under NRPU Project no. 5841.

References

  1. W.E. Amatucci, Inhomogeneous plasma flows: A review of in situ observations and laboratory experiments. J. Geophys. Res. 104, 14481 (1999)ADSCrossRefGoogle Scholar
  2. T.K. Baluku, M.A. Hellberg, Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma Phys. Plasmas. 22, 083701 (2015)ADSCrossRefGoogle Scholar
  3. S. Basu, S. Basu, E. MacKenzie, P.F. Fougere, W.R. Coley, N.C. Maynard, J.D. Winningham, M. Sugiura, W.B. Hanson, W.R. Hoegy, Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. 39, 115 (1988)ADSCrossRefGoogle Scholar
  4. J. Bonnell, P. Kintner, J.E. Wahlund, K. Lynch, R. Arnoldy, Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett. 23, 3297 (1996)ADSCrossRefGoogle Scholar
  5. S.J. Buchsbaum, Resonance in a plasma with two ion species. Phys. Fluids 3, 418 (1960)ADSCrossRefGoogle Scholar
  6. R.A. Cairns, A.A. Mamum, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995)ADSCrossRefGoogle Scholar
  7. C. Cattell, The relationship of field-aligned currents to electrostatic ion cyclotron waves. J. Geophys. Res. 86, 3641 (1981)ADSCrossRefGoogle Scholar
  8. C.A. Cattell, F.S. Mozer, I. Roth, R.R. Anderson, R.C. Elphic, W. Lennartsson, E. Ungstrup, ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from \(\sim 2.5\) to \(4.5\) \(R_{E}\). J. Geophys. Res. 96, 11421 (1991)ADSCrossRefGoogle Scholar
  9. C. Cattell, R. Bergmann, K. Sigsbee, C. Carlson, C. Chaston, R. Ergun, J. McFadden, F.S. Mozer, M. Temerin, R. Strangeway, R. Elphic, L. Kistler, E. Moebius, L. Tang, D. Klumpar, R. Pfaff, The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight. Geophys. Res. Lett. 25, 2053 (1998)ADSCrossRefGoogle Scholar
  10. F.F. Chen, Introduction to plasma physics and controlled fusion, 2nd edn. (Plenum, New York, 1984)CrossRefGoogle Scholar
  11. V.W. Chow, M. Rosenberg, Electrostatic ion cyclotron instabilities in negative ion plasmas. Phys. Plasmas 1, 2316 (1996)Google Scholar
  12. D.R. Dakin, T. Tajima, G. Benford, N. Rynn, Ion heating by the electrostatic ion cyclotron instability: theory and experiment. J. Plasma Phys. 15, 175 (1976)ADSCrossRefGoogle Scholar
  13. N. D’Angelo, Kelvin-Helmholtz instability in a fully ionized plasma in a magnetic field. Phys. Fluids 8, 1748 (1965)ADSCrossRefGoogle Scholar
  14. N. D’Angelo, R. Motley, Electrostatic oscillations near the ion cyclotron frequency. Phys. Fluids 5, 633 (1962)ADSCrossRefGoogle Scholar
  15. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827 (1994)ADSCrossRefGoogle Scholar
  16. W.E. Drummond, M.N. Rosenbluth, Anomalous diffusion arising from microinstabilities in a plasma. Phys. Fluids 5, 1507 (1962)ADSzbMATHCrossRefGoogle Scholar
  17. G.D. Earle, M.C. Kelley, G. Ganguli, Large velocity shears and associated electrostatic waves and turbulence in the auroral \(F\) region. J. Geophys. Res. 94, 321 (1989)CrossRefGoogle Scholar
  18. A.I. Eriksson, B. Holback, P.O. Dovner, R. Boström, G. Holmgren, M. André, L. Eliasson, P.M. Kintner, Geophys. Res. Lett. 21, 1843 (1994)ADSCrossRefGoogle Scholar
  19. A.I. Eriksson, A. Mälkki, P.O. Dovner, R. Boström, G. Holmgren, B. Holback, A statistical survey of auroral solitary waves and weak double layers: 2. Measurement accuracy and ambient plasma density. J. Geophys. Res. 102, 11385 (1997)ADSCrossRefGoogle Scholar
  20. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Electrostatic ion-cyclotron instability caused by a nonuniform electric field perpendicular to the external magnetic field. Phys. Fluids 28, 761 (1985)ADSzbMATHCrossRefGoogle Scholar
  21. G. Ganguli, Y.C. Lee, P.J. Palmadesso, Kinetic theory for electrostatic waves due to transverse velocity shears. Phys. Fluids 31, 823 (1988)ADSzbMATHCrossRefGoogle Scholar
  22. G. Ganguli, M.J. Keskinen, H. Romero, R. Heelis, T. Moore, C. Pollock, Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J. Geophys. Res. 99, 8873 (1994)ADSCrossRefGoogle Scholar
  23. V.V. Gavrishchaka, M.E. Koepke, G. Ganguli, Dispersive properties of a magnetized plasma with a field-aligned drift and inhomogeneous transverse flow. Phys. Plasmas 3, 3091 (1996)ADSCrossRefGoogle Scholar
  24. V.V. Gavrishchaka, M.E. Koepke, G.I. Ganguli, Ion cyclotron modes in a two-ion-component plasma with transverse-velocity shear. J. Geophys. Res. 102, 11653 (1997)ADSCrossRefGoogle Scholar
  25. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Origin of low-frequency oscillations in the ionosphere. Phys. Rev. Lett. 80, 728 (1998)ADSCrossRefGoogle Scholar
  26. V.V. Gavrishchaka, S.B. Ganguli, G.I. Ganguli, Electrostatic oscillations due to filamentary structures in the magnetic-field-aligned flow: the ion-acoustic branch. J. Geophys. Res. 104, 12683 (1999)ADSCrossRefGoogle Scholar
  27. D.A. Gurnett, Review of current research, Geophys. Monogr. Ser., vol. 35, edited by B.T. Tsurutani and R.G. Stone, p. 207, SGU, Washington, D.C., (1985)Google Scholar
  28. D.A. Gurnett, F.M. Neubauer, R. Schwenn, Plasma wave turbulence associated with an interplanetary shock. J. Geophys. Res. 84, 541 (1979)ADSCrossRefGoogle Scholar
  29. A. Hasegawa, Plasma instabilities and non-linear effects (Springer, Berlin, 1975)CrossRefGoogle Scholar
  30. R.A. Hess, R.G. MacDowall, B. Goldstein, M. Neugebauer, R.J. Forsyth, Ion acoustic-like waves observed by Ulysses near interplanetary shock waves in the three-dimensional heliosphere. J. Geophys. Res. 103, 6531 (1998)ADSCrossRefGoogle Scholar
  31. J.H. Hoffman, W.H. Dodson, Light ion concentrations and fluxes in the polar regions during magnetically quiet times. J. Geophys. Res. 85, 626–632 (1980)ADSCrossRefGoogle Scholar
  32. J.L. Horowitz, C.J. Pollock, T.E. Moore, W.K. Peterson, J.L. Burch, J.D. Winningham, J.D. Craven, L.A. Frank, A. Persoon, The polar cap environment of outflowing \(O^{+}\). J. Geophys. Res. 97, 8361 (1992)ADSCrossRefGoogle Scholar
  33. J.R. Johnson, T. Cheng, Nonlinear vortex structures with diverging electric fields and their relation to the black aurora. Geophys. Res. Lett. 22, 1481 (1995)ADSCrossRefGoogle Scholar
  34. A. Kakad, B. Kakad, C.R. Anekallu, G. Lakhina, Y. Omura, A. Fazakerley, Slow electrostatic solitary waves in Earth’s plasma sheet boundary layer. J. Geophys. Res. Sp. Phys. 121, 4452 (2016)ADSCrossRefGoogle Scholar
  35. M.C. Kelley, The earth ionosphere: plasma physics and electrodynamics, 2nd edn. (Academic Press, Elsevier, Oxford, 2009)Google Scholar
  36. M.C. Kelley, C.W. Carlson, Observations of intense velocity shear and associated electrostatic waves near an auroral arc. J. Geophys. Res. 82, 2343 (1977)ADSCrossRefGoogle Scholar
  37. C.F. Kennel, F.L. Scarf, F.V. Coroniti, E.J. Smith, D.A. Gurnett, Nonlocal plasma turbulence associated with interplanetary shocks. J. Geophys. Res. 87, 17 (1982)ADSCrossRefGoogle Scholar
  38. G. Khazanov, M. Koen, Y. Konikov, I. Sidorov, Simulation of ionosphere-plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Sp. Sci. 32, 585 (1984)ADSCrossRefGoogle Scholar
  39. S.H. Kim, R.L. Merlino, Electron attachment to \(C_{ \mathbf{7}}F_{\mathbf{14}}\) and \(SF_{\mathbf{6}}\) in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401 (2007)ADSCrossRefGoogle Scholar
  40. S.H. Kim, J.R. Heinrich, R.L. Merlino, Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet Sp. Sci. 56, 1552 (2008)ADSCrossRefGoogle Scholar
  41. S.H. Kim, R.L. Merlino, J.K. Meyer, M. Rosenberg, Low-frequency electrostatic waves in a magnetized, current-free, heavy negative ion plasma. J. Plasma Phys. 79, 1107 (2013)ADSCrossRefGoogle Scholar
  42. J.M. Kindel, C.F. Kennel, Topside current instabilities. J. Geophys. Res. 76, 3055 (1971)ADSCrossRefGoogle Scholar
  43. P.M. Kintner, M.C. Kelley, F.S. Mozer, Electrostatic hydrogen cyclotron waves near one Earth radius altitude in the polar magnetosphere. Geophys. Res. Lett. 5, 139 (1978)ADSCrossRefGoogle Scholar
  44. P.M. Kintner, M.C. Kelley, R.D. Sharp, A.G. Ghielmetti, M. Temerin, C. Cattell, P.F. Mizera, J.F. Fennell, Simultaneous observations of energetic (\(keV\)) upstreaming and electrostatic hydrogen cyclotron waves. J. Geophys. Res. 84, 7201 (1979)ADSCrossRefGoogle Scholar
  45. P.M. Kintner, J. Bonnell, R. Arnoldy, K. Lynch, C. Pollock, T. Moore, J. Holtet, C. Deehr, H. Stenbaek-Nielsen, R. Smith, J. Olson, J. Moen, The SCIFER experiment. Geophys. Res. Lett. 23, 1865 (1996)ADSCrossRefGoogle Scholar
  46. D.J. Knudsen, J.E. Wahlund, Core ion flux bursts within solitary kinetic Alfvén waves. J. Geophys. Res. 103, 4157 (1998)ADSCrossRefGoogle Scholar
  47. M.E. Koepke, W.E. Amatucci, J.J. Carroll III, V. Gavrishchaka, G. Ganguli, Velocity-shear-induced ion-cyclotron turbulence: Laboratory identification and space applications. Phys. Plasmas 2, 2523 (1995)ADSCrossRefGoogle Scholar
  48. M.E. Koepke, J.J. Carroll III, M.W. Zintl, Excitation and propagation of electrostatic ion-cyclotron waves in plasma with structured transverse flow, Phys. Plasmas 5, 1671 (1998)ADSCrossRefGoogle Scholar
  49. M.E. Koepke, P.K. Shukla, B. Eliasson, Response to “Comment on ‘Electron parallel-flow shear driven low-frequency electromagnetic modes in collisionless magnetoplasma’” [Phys. Plasmas, 094701 (2006)]. Phys. Plasmas 13(9):094702 (2006)ADSCrossRefGoogle Scholar
  50. J. Krall, J.D. Huba, SAMI3 simulation of plasmasphere refilling. Geophys. Res. Lett. 40, 2484 (2013)ADSCrossRefGoogle Scholar
  51. G.S. Lakhina, Low-frequency electrostatic noise due to velocity shear instabilities in the regions of magnetospheric flow boundaries. J. Geophys. Res. 92, 12161 (1987)ADSCrossRefGoogle Scholar
  52. G.S. Lakhina, A.P. Kakad, S.V. Singh, F. Verheest, Ion- and electron-acoustic solitons in two-electron temperature space plasmas. Phys. Plasmas 15, 062903 (2008a)ADSCrossRefGoogle Scholar
  53. G.S. Lakhina, S.V. Singh, A.P. Kakad, F. Verheest, R. Bharuthram, Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas. Nonlinear Proc. Geophys. 15, 903 (2008b)ADSCrossRefGoogle Scholar
  54. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion- and electron-acoustic solitons and double layers in multi-component space plasmas. Adv. Sp. Res. 47, 1558 (2011)ADSCrossRefGoogle Scholar
  55. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 21, 062311 (2014)ADSCrossRefGoogle Scholar
  56. G.S. Lakhina, S.V. Singh, R. Rubia, T. Sreeraj, A review of nonlinear fluid models for ion-and electron-acoustic solitons and double layers: application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake. Phys. Plasmas 25, 080501 (2018)ADSCrossRefGoogle Scholar
  57. G. Livadiotis, D.J. McComas, Understanding kappa distributions: a toolbox for space science and astrophysics. Sp. Sci. Rev. 175, 183 (2013)ADSCrossRefGoogle Scholar
  58. M. Lockwood, M.O. Chandler, J.L. Horwitz, J.R. Waite Jr., T.E. Moore, C.R. Chappell, The cleft ion fountain. J. Geophys. Res. 90, 9736 (1985)ADSCrossRefGoogle Scholar
  59. R. Lundin, L. Eliasson, B. Hultqvist, K. Stasiewicz, Plasma energization on auroral field lines as observed by the Viking spacecraft. Geophys. Res. Lett. 14, 443 (1987)ADSCrossRefGoogle Scholar
  60. R. Lysak, M. Hudson, M. Temerin, Ion Heating by strong electrostatic ion cyclotron turbulence. J. Geophys. Res. 85, 678 (1980)ADSCrossRefGoogle Scholar
  61. S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Existence domains of arbitrary amplitude nonlinear structures in twoelectron temperature space plasmas. I. Low-frequency ion-acoustic solitons. Phys. Plasmas 19, 072320 (2012)ADSCrossRefGoogle Scholar
  62. S. Mahmood, H. Saleem, Ion acoustic auroral structures in the presence of hot ion precipitation in the upper ionosphere. J. Geophys. Res. 110, A09306 (2005)ADSCrossRefGoogle Scholar
  63. G.T. Marklund, Auroral phenomena related to intense electric fields observed by the Freja satellite. Plasma Phys. Control. Fusion 39, A195 (1997)ADSCrossRefGoogle Scholar
  64. G.T. Marklund, Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region. Sp. Sci. Rev. 142, 1 (2009)ADSCrossRefGoogle Scholar
  65. G.T. Marklund, L.G. Blomberg, P.A. Lindqvist, C.G. Fälthammar, G. Haerendel, F.S. Mozer, A. Pedersen, P. Tanskanen, The double probe electric field experiment on Freja: experiment description and first results. Sp. Sci. Rev. 70, 483 (1994a)ADSCrossRefGoogle Scholar
  66. G.T. Marklund, L. Blomberg, C.G. Fälthammar, P.A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21, 1859 (1994b)ADSCrossRefGoogle Scholar
  67. J.P. McFadden, C.W. Carlson, R.E. Ergun, F.S. Mozer, M. Temerin, W. Peria, D.M. Klumpar, E.G. Shelley, W.K. Peterson, E. Moebius, L. Kistler, R. Elphic, R. Strangeway, C. Cattell, R. Pfaff, Spatial structure and gradients of ion beams observed by FAST. Geophys. Res. Lett. 25, 2021 (1998)ADSCrossRefGoogle Scholar
  68. T.E. Moore, Superthermal ionospheric outflows. Rev. Geophys. Sp. Phys. 22, 264 (1984)ADSCrossRefGoogle Scholar
  69. T.E. Moore, Origins of magnetospheric plasma. Rev. Geophys. 29, 1039 (1991)ADSCrossRefGoogle Scholar
  70. T.E. Moore, M. Lockwood, M.O. Chandler, J.H. Waite Jr., A. Persoon, Sugiura, Upwelling \(O^{+}\) ion source characteristics. J. Geophys. Res. 91, 7019 (1986)ADSCrossRefGoogle Scholar
  71. T.E. Moore, M.O. Chandler, C.J. Pollock, D.L. Reasoner, R.L. Arnoldy, B. Austin, P.M. Kintner, J. Bonnel, Plasma heating and flow in an auroral arc. J. Geophys. Res. 101, 5279 (1996)ADSCrossRefGoogle Scholar
  72. F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977)ADSCrossRefGoogle Scholar
  73. F.S. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, J. Wygant, New features of time domain electric-field structures in the auroral acceleration region. Phys. Rev. Lett. 79, 1281 (1997)ADSCrossRefGoogle Scholar
  74. Y. Nakamura, I. Tsukabeyashi, Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 2356 (1984)ADSCrossRefGoogle Scholar
  75. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of ion-cyclotron-like modes in a magnetoplasma with transverse inhomogeneous electric field. Phys. Fluids 31, 1568 (1988)ADSCrossRefGoogle Scholar
  76. K.I. Nishikawa, G. Ganguli, Y.C. Lee, Palmadesso, Simulation of electrostatic turbulence due to sheared flows parallel and transverse to the magnetic field. J. Geophys. Res. 95, 1029 (1990)ADSCrossRefGoogle Scholar
  77. Y. Ogawa, S.C. Buchert, R. Fujii, S. Nozawa, A.P. van Eyken, Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J. Geophys. Res. 114, A05305 (2009)ADSGoogle Scholar
  78. Y. Ogawa, M. Sawatsubashi, S.C. Buchert, K. Hosokawa, S. Taguchi, S. Nozawa, S. Oyama, T.T. Tsuda, R. Fujii, Relationship between auroral substorm and ion upflow in the nightside polar ionosphere. J. Geophys. Res. 118, 7426 (2013)CrossRefGoogle Scholar
  79. H. Okuda, M. Ashour-Abdalla, Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. Geophys. Res. Lett. 8, 811 (1981c)ADSCrossRefGoogle Scholar
  80. H. Okuda, K.I. Nishikawa, Ion-beam-driven electrostatic hydrogen cyclotron waves on auroral field lines. J. Geophys. Res. 89, 1023 (1984)ADSCrossRefGoogle Scholar
  81. H. Okuda, C.Z. Cheng, W.W. Lee, Numerical simulations of electrostatic hydrogen cyclotron instabilities. Phys. Fluids 24, 1060 (1981a)ADSCrossRefGoogle Scholar
  82. H. Okuda, C.Z. Cheng, W.W. Lee, Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron instabilities. Phys. Rev. Letts. 46, 427 (1981b)ADSCrossRefGoogle Scholar
  83. T.G. Onsager, R.H. Holzworth, H.C. Koons, O.H. Bauer, D.H. Gurnett, R.R. Anderson, H. Luhr, C.W. Carlson, J. Geophys. Res. 15, 397 (1989)Google Scholar
  84. W. Oohara, R. Hatakeyama, Pair-ion plasma generation using fullerenes. Phys. Rev. Letts. 91, 205005–1 (2003)ADSCrossRefGoogle Scholar
  85. W. Oohara, R. Hatakeyama, Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14, 055704 (2007a)ADSCrossRefGoogle Scholar
  86. W. Oohara, D. Date, R. Hatakeyama, Electrostatic waves in a paired Fullerene-ion plasma. Phys. Rev. Lett. 95, 175003 (2005)ADSCrossRefGoogle Scholar
  87. W. Oohara, Y. Kuwabara, R. Hatakeyama, Collective mode properties in a paired fullerene-ion plasma. Phys. Rev. E 75, 056403 (2007b)ADSCrossRefGoogle Scholar
  88. W. Oohara, M. Fujii, M. Watai, Y. Hiraoka, M. Egawa, Y. Morinaga, S. Takamori, M. Yoshida, Generation of hydrogen ionic plasma superimposed with positive ion beam. AIP Adv. 9, 085303 (2019)ADSCrossRefGoogle Scholar
  89. J.S. Pickett, S.W. Kahler, L.J. Chen, R.L. Huff, O. Santolik, Y. Khotyaintsev, P.M.E. Decreau, D. Winningham, R. Frahm, M.L. Goldstein, G.S. Lakhina, B.T. Tsurutani, B. Lavraud, D.A. Gurnett, M. Andre, A. Fazakerley, A. Balogh, H. Reme, Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective. Nonlinear Process. Geophys. 11, 183 (2004)ADSCrossRefGoogle Scholar
  90. V. Pierrard, J. Lemaire, Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923 (1996)ADSCrossRefGoogle Scholar
  91. V. Pierrard, M. Pieters, Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441 (2014)CrossRefGoogle Scholar
  92. C.J. Pollock, M.O. Chandler, T.E. Moore, J.H. Waite Jr., C.R. Chappell, D.A. Gurnett, A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18969 (1990)ADSCrossRefGoogle Scholar
  93. C.E. Rasmussen, S.M. Guiter, S.G. Thomas, A two-dimensional model of the plasmasphere: refilling time constants. Planet. Sp. Sci. 41, 35 (1993)ADSCrossRefGoogle Scholar
  94. R.V. Reddy, G.S. Lakhina, Ion acoustic double layers and solitons in auroral plasma. Planet. Sp. Sci. 39, 1343 (1991)ADSCrossRefGoogle Scholar
  95. R.V. Reddy, G.S. Lakhina, F. Verheest, Ion-acoustic double layers and solitons in multispecies auroral beam-plasmas. Planet. Sp. Sci. 40, 1055 (1992)ADSCrossRefGoogle Scholar
  96. A. Rehman, S.A. Shan, T. Majeed, Effect of collisions on Weibel instability with anisotropic electron distributions. Phys. Plasmas 24, 122113 (2017)CrossRefGoogle Scholar
  97. P.G. Richards, D.G. Torr, Auroral modeling of the 3371 Å emission rate: dependence on characteristic electron energyJ. Geophys. Res. 95, 10337 (1990)ADSCrossRefGoogle Scholar
  98. P. Rodriguez, D.A. Gurnett, Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock: Cluster observations. J. Geophys. Res. 81, 2871 (1976)ADSCrossRefGoogle Scholar
  99. H. Romero, G. Ganguli, Nonlinear evolution of a strongly sheared crossfield plasma flow. Phys. Fluids B 5, 3163 (1993)ADSCrossRefGoogle Scholar
  100. H. Romero, G. Ganguli, Y.C. Lee, on acceleration and coherent structures generated by lower hybrid shear-driven instabilities. Phys. Rev. Lett. 69, 3503 (1992)ADSCrossRefGoogle Scholar
  101. M. Rosenberg, R.L. Merlino, Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma. J. Plasma Phys. 75, 495 (2009)ADSCrossRefGoogle Scholar
  102. M. Rosenberg, R.L. Merlino, Drift instability in a positive ion-negative ion plasma. J. Plasma Phys. 79, 949 (2013)ADSCrossRefGoogle Scholar
  103. A. Roux, S. Perraut, J.L. Rauch, C. De Villedary, G. Kremser, A. Korth, D.T. Young, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on board GEOS 1 and 2: 2. Generation of ion cyclotron waves and heating of \(He^{+}\) ions. J. Geophys. Res. 87, 8174 (1982)ADSCrossRefGoogle Scholar
  104. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domains of electrostatic solitary structures in the solar wind plasma. Phys. Plasmas 23, 062902 (2016)ADSCrossRefGoogle Scholar
  105. R. Rubia, S.V. Singh, G.S. Lakhina, Occurrence of electrostatic solitary waves in the lunar wake. J. Geophys. Res. Sp. Phys. 122, 9134 (2017)ADSCrossRefGoogle Scholar
  106. R. Rubia, S.V. Singh, G.S. Lakhina, Existence domain of electrostatic solitary waves in the lunar wake. Phys. Plasmas 25, 032302 (2018)ADSCrossRefGoogle Scholar
  107. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Low frequency solitons and double layers in a magnetized plasma with two temperature electrons. Phys. Plasmas 19, 122308 (2012)ADSCrossRefGoogle Scholar
  108. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons. Phys. Plasmas 21, 082304 (2014)ADSCrossRefGoogle Scholar
  109. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas. Adv. Sp. Res. 57, 813 (2016)ADSCrossRefGoogle Scholar
  110. R.Z. Sagdeev, In reviews of plasma physics, vol. 3 (Consultants Bureau, New York, 1966), p. 23Google Scholar
  111. H. Saleem, Kinetic theory of acoustic wave in pair-ion plasmas. Phys. Plasmas 13, 044502 (2006)ADSCrossRefGoogle Scholar
  112. H. Saleem, A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics. Phys. Plasmas 14, 014505 (2007c)ADSMathSciNetCrossRefGoogle Scholar
  113. H. Saleem, J. Vranjes, S. Poedts, On the shear flow instability and its applications to multicomponent plasmas. Phys. Plasmas 14, 072104 (2007a)ADSCrossRefGoogle Scholar
  114. H. Saleem, J. Vranjes, S. Poedts, Unstable drift mode driven by shear plasma flow in solar spicules. Astron. Astrophys. 471, 289 (2007b)ADSCrossRefGoogle Scholar
  115. H. Saleem, S. Ali, Q. Haque, Ion acoustic wave instabilities and nonlinear structures associated with field-aligned flows in the \(F\)-region ionosphere. Phys. Plasmas 23, 112901 (2016)ADSCrossRefGoogle Scholar
  116. H. Saleem, S.A. Shan, A. Rehman, Ions shear flow and electron field-aligned current produce ion acoustic waves in the oxygen-hydrogen ionospheric plasma. Phys. Plasmas 24, 122901 (2017)ADSCrossRefGoogle Scholar
  117. R.W. Schunk, A.F. Nagy, Rev. Geophys. 16, 355 (1978).  https://doi.org/10.1029/RG016i003p00355 ADSCrossRefGoogle Scholar
  118. S. Sen, R.A. Cairns, R.G. Storer, D.R. McCarthy, Stability and transport of parallel velocity shear driven mode with negative magnetic shear. Phys. Plasmas 7, 1192 (2000)ADSMathSciNetCrossRefGoogle Scholar
  119. S.A. Shan, Coupled ion acoustic and drift solitons in a magnetized bi-ion plasma with pseudo-potential approach. Phys. Plasmas 25, 022113 (2018)ADSCrossRefGoogle Scholar
  120. S.A. Shan, Q. Haque, Drift and ion acoustic wave driven vortices with superthermal electrons. Phys. Plasmas 19, 084503 (2012)ADSCrossRefGoogle Scholar
  121. S.A. Shan, S.A. El-Tantawy, W.M. Moslem, On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons. Phys. Plasmas 20, 082104 (2013)ADSCrossRefGoogle Scholar
  122. S.A. Shan, I. Hassan, H. Saleem, Electrostatic wave instability and soliton formation with non-thermal electrons in \(O\)-\(H\) plasma of ionosphere. Phys. Plasmas 26, 022114 (2019)ADSCrossRefGoogle Scholar
  123. E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972)ADSCrossRefGoogle Scholar
  124. E.G. Shelley, R.D. Sharp, R.G. Johnson, Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett. 3, 654 (1976)ADSCrossRefGoogle Scholar
  125. P.K. Shukla, P.H. Sakanaka, A nonlinear model for auroral density cavities. Geophys. Res. Lett. 27, 89 (2000)ADSCrossRefGoogle Scholar
  126. P.K. Shukla, G.T. Birk, R. Bingham, Vortex streets driven by sheared flow and applications to black aurora. Geophys. Res. Lett. 22, 671 (1995)ADSCrossRefGoogle Scholar
  127. S.V. Singh, G.S. Lakhina, Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  128. R.L. Smith, N. Brice, Propagation in multicomponent plasmas. J. Geophys. Res. 69, 5029 (1964)ADSzbMATHCrossRefGoogle Scholar
  129. T. Sreeraj, S.V. Singh, G.S. Lakhina, Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind. Phys. Plasmas 23, 082901 (2016)ADSCrossRefGoogle Scholar
  130. T. Sreeraj, S.V. Singh, G.S. Lakhina, Higher harmonic instability of electrostatic ion cyclotron waves. Pramana J. Phys. 92, 78 (2019)ADSCrossRefGoogle Scholar
  131. T. Tang, C. Cattell, R. Lysak, L.B. Wilson, L. Dai, S. Thaller, THEMIS observations of electrostatic ion cyclotron waves and associated ion heating near the Earth’s day side magnetopause. J. Geophys. Res. 120, 3380 (2015)CrossRefGoogle Scholar
  132. M. Temerin, M. Woldorff, F.S. Mozer, Nonlinear steepening of the electrostatic ion cyclotron wave. Phys. Rev. Lett. 43, 1941 (1979)ADSCrossRefGoogle Scholar
  133. R.T. Tsunoda, R.C. Livingston, J.F. Vickrey, R.A. Heelis, W.B. Hanson, F.J. Rich, P.F. Bythrow, J. Geophys. Res. 94, 15,277 (1989)ADSCrossRefGoogle Scholar
  134. J.N. Tu, J.L. Horwitz, P. Song, X.Q. Huang, B.W. Reinisch, P.G. Richards, Simulating plasmaspheric field-aligned density profiles measured with IMAGE/RPI: effects of plasmasphere refilling and ion heating. J. Geophys. Res. 108, 1017 (2003)CrossRefGoogle Scholar
  135. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968)ADSCrossRefGoogle Scholar
  136. F. Verheest, Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301 (2006)ADSCrossRefGoogle Scholar
  137. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, B. Cabrit, A.I. Eriksson, P.M. Kinruer, M.C. Kelley, J. Bonnell, S. Chesney, Observations of ion acoustic fluctuations in the auroral topside ionosphere by the FREJA S/C. Geophys. Res. Lett. 21, 1835 (1994a)ADSCrossRefGoogle Scholar
  138. J.E. Wahlund, P. Louarn, T. Chust, H. de Feraudy, A. Roux, B. Holback, P.O. Dovner, G. Holmgren, On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett. 21, 1831 (1994b)ADSCrossRefGoogle Scholar
  139. Y. Wang, J. Tu, P. Song, A new dynamic fluid-kineticmodel for plasma transport within the plasmasphere. J. Geophys. Res. Sp. Phys. 108, 1017 (2015)Google Scholar
  140. P. Webb, E. Essex, A dynamic global model of the plasmasphere. J. Atmos. Sol. Terr. Phys. 66, 1057 (2004)ADSCrossRefGoogle Scholar
  141. B.A. Whalen, W. Bernstein, P.W. Daly, Low altitude acceleration of ionospheric ions. Geophys. Res. Lett. 5, 55 (1978)ADSCrossRefGoogle Scholar
  142. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the parallel velocity shear instability. Phys. Lett. A 236, 223 (1997a)ADSCrossRefGoogle Scholar
  143. J. Willig, R.L. Merlino, N. D’Angelo, Experimental study of the collisional parallel velocity shear instability. J. Geophys. Res. 102, 27249 (1997b)ADSCrossRefGoogle Scholar
  144. G.R. Wilson, Semikinetic modeling of the outflow of ionospheric plasma through the topside collisional to collisionless transition region. J. Geophys. Res. 97, 10551 (1992)ADSCrossRefGoogle Scholar
  145. X.Y. Wu, J.L. Horwitz, G.M. Estep, Y.J. Su, D.G. Brown, P.G. Richards, G.R. Wilson, Dynamic fluid-kinetic (DyFK) modeling of auroral plasma outflow driven by soft electron precipitation and transverse ion heating. J. Geophys. Res. 104, 17263 (1999)ADSCrossRefGoogle Scholar
  146. X.Y. Wu, J.L. Horwitz, J.N. Tu, Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation. J. Geophys. Res. 107, 1283 (2002)CrossRefGoogle Scholar
  147. A.W. Yau, B.A. Whalen, A.G. McNamara, P.J. Kellogg, W. Bernstein, J. Geophys. Res. 88, 3411 (1983)CrossRefGoogle Scholar
  148. A.W. Yau, T. Abe, W.K. Peterson, The polar wind: recent observations. J. Atmos. Sol. Terr. Phys. 69, 1936 (2007)ADSCrossRefGoogle Scholar
  149. D.T. Young, S. Perraut, A. Roux, C. De Villedary, R. Gendrin, A. Korth, G. Kremser, D. Jones, Wave-particle interactions near \( \Omega _{He^{+}}\) observed on GEOS 1 and 2: 1. Propagation of ion cyclotron waves in He\(^{+}\)-rich plasma. J. Geophys. Res. 86, 6755 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2020

Authors and Affiliations

  1. 1.Department of Space ScienceInstitute of Space Technology (IST)IslamabadPakistan
  2. 2.Theoretical Physics DivisionPINSTECH P. O. NiloreIslamabadPakistan
  3. 3.Theoretical Research Institute Pakistan Academy of SciencesIslamabadPakistan

Personalised recommendations