Advertisement

Extending service life of hall thrusters: recent progress and future challenges

  • Yongjie DingEmail author
  • Haotian Fan
  • Dong Ma
  • Lei Wang
  • Boyang Jia
  • Hezhi Sun
  • Weifeng Xu
  • Hongbo Su
  • Liqiu Wei
  • Hong Li
  • Daren Yu
Topical Collection: Review Paper Recent Progress in Physics of Plasma-Based Space Propulsion
  • 38 Downloads
Part of the following topical collections:
  1. Recent Progress in Physics of Plasma-Based Space Propulsion

Abstract

Hall thrusters are widely applied to space propulsion missions because of characteristics such as high specific impulse, great thrust-to-power ratio, high efficiency, and simple structure. Because the scope of space missions using Hall thrusters has expanded, a higher total impulse is required to extend a north–south station-keeping mission to an orbit transfer mission, requiring Hall thrusters with improved lifetimes. Existing research shows that improving the anti-sputtering capacity of the discharge channel and significantly reducing the ion energy and flux bombardment on the wall of the discharge channel are the best measures to improve the lifetime of Hall thrusters. This study summarizes the lifetime restraining factors of Hall thrusters and analyzes the magnetic shielding technology, wall-less technology, aft-magnetic technology, and cylindrical Hall thruster technology to reduce ion energy and flux bombardment on the discharge-channel wall, adopting low-sputtering yield materials to reduce the wall erosion rate, which can improve the lifetime of Hall thrusters. This paper also identifies the limitations of each technology, such as the erosion of magnetic poles (MS) and ceramic cover plates (CHT), larger plume divergence angle (wall-less), hard-to-select aft-magnetic degree (aft-magnetic technology), low compactness, and great porosity (graphite material), providing a reference for further research.

Keywords

Space propulsion Hall thruster Long-life technology 

Notes

Acknowledgements

The authors wish to acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51777045 and 51736003).

References

  1. A. Semenkin, External anode layer thruster parameters at a high specific impulse regimes. IEPC 1997-055 (1997)Google Scholar
  2. Agrawal R, Nieto A, Chen H, Mora M, Agarwal A (2013) Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl. Mater. Interfaces. 5(22):12052–12057.  https://doi.org/10.1021/am4038678 CrossRefGoogle Scholar
  3. Ahedo E, Pablo VD (2007) Combined effects of electron partial thermalization and secondary emission in Hall thruster discharges. Phys. Plasma 14:083501.  https://doi.org/10.1063/1.2749237 ADSCrossRefGoogle Scholar
  4. Ahedo E, Gallardo JM, Martinez-Sanchez M (2003) Effects of the radial plasma-wall interaction on the Hall thruster discharge. Phys. Plasma 10(8):3397–3409.  https://doi.org/10.1063/1.1584432 ADSCrossRefGoogle Scholar
  5. A.L. Ortega, I.G. Mikellides, Investigations of pole erosion mechanisms in the 12.5 kW HERMeS Hall thruster using numerical simulations and ion velocity measurements. AIAA 2018-4647 (2018).  https://doi.org/10.2514/6.2018-4647
  6. A.M. Kapulkin, A.D. Grishkevich, V.F. Prisnyakov, Outside electric field thruster. In: Proceedings 45th IAF Congress; Space Technol. (Pergamon, UK), 15, 391–394 (1995)Google Scholar
  7. Arbab AA, Mengal N, Sahito IA, Memon AA, Jeong SH (2018) An organic route for the synthesis of cationic porous graphite nanomaterial used as photocatalyst and electrocatalyst for dye-sensitized solar cell. Electrochim. Acta 266:43–53.  https://doi.org/10.1016/j.electacta.2018.02.012 CrossRefGoogle Scholar
  8. B. Welander, C. Carpenter, K. Grys, Life and operating range extension of the BPT-4000 qualification model Hall Thruster. AIAA 2006-5263 (2006).  https://doi.org/10.2514/6.2006-5263
  9. B.A. Jorns, C. Dodson, J. Anderson, D.M. Goebel, R.R. Hofer, M. Sekerak, A.L. Ortega, I. Mikellides. Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster. AIAA 2016-4839 (2016).  https://doi.org/10.2514/6.2016-4839
  10. Baranov O, Bazaka K, Kersten H, Keidar M, Cvelbar U, Xu S, Levchenko I (2017) Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl. Phys. Rev. 4(4):041302.  https://doi.org/10.1063/1.5007869 ADSCrossRefGoogle Scholar
  11. Becatti G, Goebel DM, Polk JE, Guerrero P (2018) Life evaluation of a lanthanum hexaboride hollow cathode for high-power Hall thruster. J. Propul. Power 34(4):893–900.  https://doi.org/10.2514/1.B36659 CrossRefGoogle Scholar
  12. Behroozfar A, Daryadel S, Morsali SR, Moreno S, Baniasadi M, Bernal RA, Minary-Jolandan M (2017) Microscale 3D printing of nanotwinned copper. Adv. Mater. 30(4):1705107.  https://doi.org/10.1002/adma.201705107 CrossRefGoogle Scholar
  13. Boeuf JP (2017) Tutorial: physics and modeling of Hall thrusters. J. Appl. Phys. 121(1):011101.  https://doi.org/10.1063/1.4972269 ADSCrossRefGoogle Scholar
  14. Boy ID (2000) Computation of the plume of an anode-layer Hall thruster. J. Propul. Power 16(5):902–909.  https://doi.org/10.2514/2.5658 CrossRefGoogle Scholar
  15. R.R. Hofer, I.G. Mikellides, I. Katz, D.M. Goebel, BPT-4000 Hall Thruster discharge chamber erosion model comparison with qualification life test data. IEPC 2007-267 (2007)Google Scholar
  16. Brandhorst HW, Neill MJ, Jones PA, Cassady RJ (2002) POWOW-An alternative power source for Mars exploration. Acta Astron. 51(1):57–62.  https://doi.org/10.1016/S0094-5765(02)00073-5 CrossRefGoogle Scholar
  17. C. Claus, M. Day, V. Kim, Y. Kondakov, T. Randolph, Preliminary study of possibility to ensure large enough lifetime of SPT operating under increased powers. AIAA 97-2789 (1997).  https://doi.org/10.2514/6.1997-2789
  18. C. Pigeon, Development of a miniature low power cylindrical Hall thruster for microsatellites. Master Thesis. University of Toronto, pp. 60–61 (2017)Google Scholar
  19. Chang HY, Alvarado A, Marian J (2018) Calculation of secondary electron emission yields from low-energy electron deposition in tungsten surfaces. Appl. Surf. Sci. 450(30):190–199.  https://doi.org/10.1016/j.apsusc.2018.04.155 ADSCrossRefGoogle Scholar
  20. Chen L, Wang YJ, Shen HF, Rao JC, Zhou Y (2004) Effect of SiC content on mechanical properties and thermal shock resistance of BN-ZrO2-SiC composites. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 590:346–351.  https://doi.org/10.1016/j.msea.2013.10.054 CrossRefGoogle Scholar
  21. Chiu YH, Austin BL, Williams K, Dressler RA, Karabadzhak GF (2006) Passive optical diagnostic of Xe-propelled Hall thrusters. I. Emission cross sections. J. Appl. Phys. 99:1–10.  https://doi.org/10.1063/1.2195018 CrossRefGoogle Scholar
  22. Cho S, Komurasaki K, Arakawa Y (2013) Kinetic particle simulation of discharge and wall erosion of a Hall thruster. Phys. Plasma 20:063501.  https://doi.org/10.1063/1.4810798 ADSCrossRefGoogle Scholar
  23. Choueiri EY (2001a) Fundamental difference between the two Hall thruster variants. Phys. Plasma. 8:5025.  https://doi.org/10.1063/1.1409344 ADSCrossRefGoogle Scholar
  24. Choueiri EY (2001b) Plasma oscillations in Hall thrusters. Phys. Plasma 8:1411.  https://doi.org/10.1063/1.1354644 ADSCrossRefGoogle Scholar
  25. Choueiri EY (2004) A critical history of electric propulsion: the first fifty years (1906–1956). J. Propul. Power 20(2):193–203.  https://doi.org/10.2514/1.9245 CrossRefGoogle Scholar
  26. R.W. Conversano, D.M. Goebel, I.G. Mikellides, R.R. Hofer, T.S. Matlock, R.E. Wirz, Magnetically shielded miniature Hall thruster: performance assessment and status update. AIAA2014-3896 (2014).  https://doi.org/10.2514/6.2014-3896
  27. Conversano RW, Goebel DM, Hofer RR, Matlock TS, Wirz RE (2015) Development and initial testing of a magnetically shielded miniature Hall thruster. IEEE Trans. Plasma Sci. 43(1):103–117.  https://doi.org/10.1109/TPS.2014.2321107 ADSCrossRefGoogle Scholar
  28. Conversano RW, Goebel DM, Mikellides IG, Hofer RR, Wirz RE (2017a) Performance analysis of a low-power magnetically shielded Hall thruster: computational modeling. J. Propul. Power 34(4):992–1001.  https://doi.org/10.2514/1.B36231 CrossRefGoogle Scholar
  29. Conversano RW, Goebel DM, Hofer RR, Mikellides IG, Wirz RE (2017b) Performance analysis of a low-power magnetically shielded Hall thruster: experiments. J. Propul. Power 34(4):975–983.  https://doi.org/10.2514/1.B36230 CrossRefGoogle Scholar
  30. D. King, D. Tilley, R. Aadland, K. Nottingham, R. Smith, C. Roberts, Development of the BPT family of U.S.-designed hall current thrusters for commercial LEO and GEO applications. AIAA 1998-3338 (1998).  https://doi.org/10.2514/6.1998-3338
  31. Ding YJ, Peng WJ, Wei LQ, Sun GS, Li H, Yu DR (2016) Computer simulations of Hall thrusters without wall losses designed using two permanent magnetic rings. J. Phys. D Appl. Phys. 49(46):465001.  https://doi.org/10.1088/0022-3727/49/46/465001 CrossRefGoogle Scholar
  32. Ding YJ, Li P, Zhang X, Wei LQ, Sun HZ, Peng WJ, Yu DR (2017a) Effects of the magnetic field gradient on the wall power deposition of Hall thrusters. J. Plasma Phys. 83(2):905830205.  https://doi.org/10.1017/S0022377817000241 CrossRefGoogle Scholar
  33. Ding YJ, Xu Y, Peng WJ, Wei LQ, Su HB, Sun HZ, Li P, Li H, Yu DR (2017b) A type of cylindrical Hall thruster with a magnetically insulated anode. J. Phys. D Appl. Phys. 50:145203.  https://doi.org/10.1088/1361-6463/aa6019 ADSCrossRefGoogle Scholar
  34. Ding YJ, Peng WJ, Sun HZ, Wei LQ, Zeng M, Wang FF, Yu DR (2017c) Visual evidence of suppressing the ion and electron energy loss on the wall in Hall thrusters. Jpn. J. Appl. Phys. 56(3):038001.  https://doi.org/10.7567/JJAP.56.038001 ADSCrossRefGoogle Scholar
  35. Ding YJ, Peng WJ, Sun HZ, Xu Y, Wei LQ, Li H, Zeng M, Wang FF, Yu DR (2017d) Effect of oblique channel on discharge characteristics of 200-W Hall thruster. Phys. Plasma 24(2):023507.  https://doi.org/10.1063/1.4976104 ADSCrossRefGoogle Scholar
  36. Ding YJ, Sun HZ, Wei LQ, Li P, Su HB, Peng WJ, Yu DR (2017e) A 200 W Hall thruster with hollow indented anode. Acta Astron. 139:521–527.  https://doi.org/10.1016/j.actaastro.2017.08.001 CrossRefGoogle Scholar
  37. Ding YJ, Sun HZ, Li P, Wei LQ, Su HB, Peng WJ, Li H, Yu DR (2017f) Application of hollow anode in Hall thruster with double-peak magnetic fields. J. Phys. D Appl. Phys. 50(33):335201.  https://doi.org/10.1088/1361-6463/aa7bbf CrossRefGoogle Scholar
  38. Ding YJ, Li P, Sun HZ, Wei LQ, Xu Y, Peng WJ, Su HB, Li H, Yu DR (2017g) Simulation of double stage Hall thruster with double-peaked magnetic field. Eur. Phys. J. D 71:192.  https://doi.org/10.1140/epjd/e2017-80124-8 ADSCrossRefGoogle Scholar
  39. Ding YJ, Sun HZ, Li P, Wei LQ, Xu Y, Peng WJ, Su HB, Yu DR (2017h) Influence of hollow anode position on the performance of a Hall-effect thruster with double-peak magnetic field. Vacuum 143:251–261.  https://doi.org/10.1016/j.vacuum.2017.06.030 ADSCrossRefGoogle Scholar
  40. Ding YJ, Sun HJ, Peng WJ, Xu Y, Wei LQ, Li H, Li P, Su HB, Yu DR (2017i) Experimental test of 200 W Hall thruster with titanium wall. Jpn. J. Appl. Phys. 56(5):050312.  https://doi.org/10.7567/JJAP.56.050312 ADSCrossRefGoogle Scholar
  41. Ding YJ, Su HB, Li P, Wei LQ, Li H, Peng WJ, Xu Y, Sun HZ, Yu DR (2017j) Study of the catastrophic discharge phenomenon in a Hall thruster. Phys. Lett. A 381:3482–3486.  https://doi.org/10.1016/j.physleta.2017.09.002 ADSCrossRefGoogle Scholar
  42. Ding YJ, Peng WJ, Sun HZ, Wei LQ, Zeng M, Wang FF, Yu DR (2017k) Performance characteristics of No-Wall-Losses Hall thruster. Eur. Phys. J. Spec. Top 226:2945–2953.  https://doi.org/10.1140/epjst/e2016-60247-y CrossRefGoogle Scholar
  43. Ding YJ, Li H, Wei LQ, Hu YL, Shen Y, Liu H, Ning ZX, Mao W, Yu DR (2018a) Overview of Hall electric propulsion in China. IEEE Trans. Plasma Sci. 46(2):2263–2282.  https://doi.org/10.1109/TPS.2017.2776257 CrossRefGoogle Scholar
  44. Ding YJ, Li H, Li P, Jia BY, Wei LQ, Su HB, Sun HZ, Wang L, Yu DR (2018b) Effect of relative position between cathode and magnetic separatrix on the discharge characteristic of Hall thrusters. Vacuum 154:167–173.  https://doi.org/10.1016/j.vacuum.2018.05.005 ADSCrossRefGoogle Scholar
  45. Ding YJ, Li H, Jia BY, Li P, Wei LQ, Xu Y, Peng WJ, Sun HZ, Cao Y, Yu DR (2018c) Simulation of the effect of a magnetically insulated anode on a low power cylindrical Hall thruster. Plasma Sci. Technol 20:035509.  https://doi.org/10.1088/2058-6272/aa9fe7 ADSCrossRefGoogle Scholar
  46. Ding YJ, Li H, Sun HZ, Wei LQ, Jia BY, Su HB, Peng WJ, Li P, Yu DR (2018d) A 200-W permanent magnet Hall thruster discharge with graphite channel wall. Phys. Lett. A 382:3079–3082.  https://doi.org/10.1016/j.physleta.2018.08.017 ADSCrossRefGoogle Scholar
  47. D.M. Goebel, B.A. Jorns, R.R. Hofer, I.G. Mikellides, I. Katz. Pole-piece interactions with the plasma in a magnetically shielded Hall thruster. AIAA 2014-3899 (2014). https://doi.org/10.2514/6.2014-3899Google Scholar
  48. Doerner RP, Whyte DG, Goebel DM (2003) Sputtering yield measurements during low energy xenon plasma bombardment. J. Appl. Phys. 93(9):5816–5823.  https://doi.org/10.1063/1.1566474 ADSCrossRefGoogle Scholar
  49. Duan XM, Jia DC, Zhou Y, Yang ZH, Wang YJ, Ren FQ, Yu DR, Ding YJ (2013a) Mechanical properties and plasma erosion resistance of BNp/Al2O3-SiO2 composite ceramics. J. Cent. South Univ. 20:1462–1468.  https://doi.org/10.1007/s11771-013-1635-3 CrossRefGoogle Scholar
  50. Duan XM, Jia DC, Meng QC, Yang ZH, Yu Y, Zhou Y, Yu DR, Ding YJ (2013b) Study on the plasma erosion resistance of ZrO2p(3Y)/BN-SiO2 composite ceramics. Compos. B Eng. 46:130–134.  https://doi.org/10.1016/j.compositesb.2012.10.027 CrossRefGoogle Scholar
  51. Duan XM, Ding YJ, Jia DC, Jing N, Yang ZH, He PG, Tian Z, Wang SJ, Wang YJ, Zhou Y, Yu DR (2014) Ion sputtering erosion mechanisms of h-BN composite ceramics with textured microstructures. J. Alloy. Compd. 613:1–7.  https://doi.org/10.1016/j.jallcom.2014.05.221 CrossRefGoogle Scholar
  52. Duan XM, Yang ZH, Chen L, Tian Z, Cai DL, Wang YJ, Jia DC, Zhou Y (2016) Review on the properties of hexagonal boron nitride matrix composite ceramics. J. Eur. Ceram. Soc. 36:3725–3737.  https://doi.org/10.1016/j.jeurceramsoc.2016.05.007 CrossRefGoogle Scholar
  53. Dudeck M, Doveil F, Arcis N, Zurbach S (2012) Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions. IOP Conf. Ser. Mater. Sci. Eng. 29:012010.  https://doi.org/10.1088/1757-899x/29/1/012010 CrossRefGoogle Scholar
  54. Eckstein W (2007) Sputtering yields. Sputtering by particle Bombardment. Springer, Berlin, pp 33–187CrossRefGoogle Scholar
  55. Eichler J, Lesniak C (2008) Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28:1105–1109.  https://doi.org/10.1016/j.jeurceramsoc.2007.09.005 CrossRefGoogle Scholar
  56. Ellison CL, Raitses Y, Fisch NJ (2012) Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster. Phys. Plasma 19:013503.  https://doi.org/10.1063/1.3671920 ADSCrossRefGoogle Scholar
  57. E.M. Bringa, Ion tracks insolids: sputtering and surface modification. Ph.D. thesis, University of Virginia, pp. 82–83 (2000)Google Scholar
  58. Frieman JD, Kamhawi H, Williams G, Herman D, Peterson PY, Gilland J, Hofer R (2018) Long duration wear test of the NASA HERMeS Hall thruster. AIAA.  https://doi.org/10.2514/6.2018-4645
  59. Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H, Komurasaki K (2014) Operating parameters and oscillation characteristics of an anode-layer Hall thruster with argon propellant. Vacuum 110:159–164.  https://doi.org/10.1016/j.vacuum.2014.07.022 ADSCrossRefGoogle Scholar
  60. Gao YY, Liu H, Hu P, Huang HY, Yu DR (2016a) The effect of magnetic field near the anode on CHT. Plasma Sources Sci. Technol. 25:035011.  https://doi.org/10.1088/0963-0252/25/3/035011 ADSCrossRefGoogle Scholar
  61. Gao YY, Liu H, Hu P, Huang HY, Yu DR (2016b) Performance characteristics according to the radial position of gas distributor holes in a low power cylindrical Hall thruster. Phys. Plasma 23:083514.  https://doi.org/10.1063/1.4960663 ADSCrossRefGoogle Scholar
  62. Gao YY, Liu H, Hu P, Huang HY, Yu DR (2017) Effect of anode position on the performance characteristics of a low-power cylindrical Hall thruster. Phys. Plasma 24:063518.  https://doi.org/10.1063/1.4986091 ADSCrossRefGoogle Scholar
  63. Garnier Y, Viel V, Roussel J-F, Bernard J (1999) Low-energy xenon ion sputtering of ceramics investigated for stationary plasma thrusters. J. Vac. Sci. Technol., A 17:3246–3254.  https://doi.org/10.1116/1.582050 ADSCrossRefGoogle Scholar
  64. Garrigues L, Hagelaar JM, Boeuf JP, Raitses Y, Smirnov A, Fisch NJ (2008) Simulations of a miniaturized cylindrical Hall thruster. IEEE Trans. Plasma Sci. 36(5):2034–2042.  https://doi.org/10.1109/TPS.2008.2003976 ADSCrossRefGoogle Scholar
  65. Gascon N, Dudeck M, Barral S (2003) Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100. Phys. Plasma 10(10):4123–4136.  https://doi.org/10.1063/1.1611880 ADSCrossRefGoogle Scholar
  66. Goebel DM, Hofer RR, Mikellides IG, Katz I, Polk JE, Dotson BN (2015) Conducting wall Hall thrusters. IEEE Trans. Plasma Sci. 43(1):118–126.  https://doi.org/10.1109/TPS.2014.2321110 ADSCrossRefGoogle Scholar
  67. Granstedt EM, Raitses Y, Fisch NJ (2008) Cathode effects in CHTs. J. Appl. Phys. 104:103302.  https://doi.org/10.1063/1.2999343 ADSCrossRefGoogle Scholar
  68. Grimaud L, Mazouffre S (2017) Conducting wall Hall thrusters in magnetically shielded and standard configurations. J. Appl. Phys. 122(3):011101–011222.  https://doi.org/10.1063/1.4995285 CrossRefGoogle Scholar
  69. Grimaud L, Mazouffre S, Boniface C (2018) Performance comparison between standard and magnetically shielded 200 W Hall thrusters with BN-SiO2 and graphite channel walls. Vacuum 155:514–523ADSCrossRefGoogle Scholar
  70. Hargus WA Jr, Cappelli MA (2002) Interior and exterior laser-induced fluorescence and plasma measurements within a Hall thruster. J. Propul. Power 18:160–168.  https://doi.org/10.2514/2.5912 CrossRefGoogle Scholar
  71. Hargus WA, Pote B (2002) Examination of a Hall thruster start transient. AIAA.  https://doi.org/10.2514/6.2002-3956 CrossRefGoogle Scholar
  72. Hobbs GD, Wesson JA (1967) Heat flow through a langmuir sheath in the presence of electron emission. Plasma Phys. 9(1):85–87.  https://doi.org/10.1088/0032-1028/9/1/410 ADSCrossRefGoogle Scholar
  73. Hofer RR, Gallimore AD (2006) High-specific impulse Hall thrusters, part 2: efficiency analysis. J. Propul. Power 22(6):732–740.  https://doi.org/10.2514/1.15954 CrossRefGoogle Scholar
  74. Hofer RR, Goebel DM, Mikellides IG, Katz I (2014) Magnetically shielded of a laboratory Hall thruster. II. Experiments. J. Appl. Phys. 115(4):043304.  https://doi.org/10.1063/1.4862314 ADSCrossRefGoogle Scholar
  75. I. Katz, I.G. Mikellides, R.R. Hofer, Channel wall plasma thermal loads in Hall thrusters with magnetically shielded. AIAA 2011-6082 (2011).  https://doi.org/10.2514/6.2011-6082
  76. I.G. Mikellides, A.L. Ortega, Assessment of pole erosion in a magnetically shielded Hall thruster. AIAA 2014–3897 (2014)  https://doi.org/10.2514/6.2014-3897
  77. I.G. Mikellides, I. Katz, R.R. Hofer, Design of a laboratory Hall thruster with magnetically shielded channel walls, phase I: numerical simulations. AIAA 2011–5809 (2011).  https://doi.org/10.2514/6.2011-5809
  78. I.G. Mikellides, R.R. Hofer, I. Katz, D.M. Goebel (2013b) The effectiveness of magnetically shielded in high-Isp Hall thrusters. AIAA 2013–3885 (2013).  https://doi.org/10.2514/6.2013-3885
  79. Jacobson D, Manzella D (2003) 50 kW Class Krypton hall thruster performance. AIAA.  https://doi.org/10.2514/6.2003-4550 CrossRefGoogle Scholar
  80. J.E. Polk, R. Lobbia, A. Barriault, P. Guerrero, I. Mikellides, A. L. Ortega, Inner front pole cover erosion in the 12.5 kW HERMeS Hall thruster over a range of operating conditions. IEPC-2017-409 (2017)Google Scholar
  81. Jiang T, Jin Z, Yang J, Qiao G (2009) Investigation on the preparation and machinability of the B4C/BN nanocomposites by hot-pressing process. J. Mater. Process. Technol. 209(1):561–571.  https://doi.org/10.1016/j.jmatprotec CrossRefGoogle Scholar
  82. Jiang YW, Tang HB, Ren JX, Li M, Cao JB (2018) Magnetic mirror effect in a cylindrical Hall thruster. J. Phys. D Appl. Phys. 51:035201.  https://doi.org/10.1088/1361-6463 ADSCrossRefGoogle Scholar
  83. J.M. Haas, R.R. Hofer, D.L. Brown, B.M. Reid, A.D. Gallimore, Design of a 6-kW Hall thruster for high thrust/power investigation. In: 54th JANNAF Propulsion Meeting, pp. 14–17 (2007)Google Scholar
  84. J.T. Yim, M. Keidar, I.D. Boyd, An investigation of factors involved in Hall thruster wall erosion modeling. AIAA 2006-4657 (2006).  https://doi.org/10.2514/6.2006-4657
  85. K. Grys, A. Mathers, B. Welander, V. Khayms, Demonstration of 10,400 hours of operation on 4.5 kW qualification model Hall thruster. AIAA 2010-6698 (2010).  https://doi.org/10.2514/6.2010-6698
  86. K. Matyash, R. Schneider, 3D simulation of the rotating spoke in a Hall thruster. IEPC 2013-307 (2013)Google Scholar
  87. Kaganovich ID, Raitses Y, Sydorenko D, Smolyakov A (2007) Kinetic effects in a Hall thruster discharge. Phys. Plasma 14(5):057104.  https://doi.org/10.1063/1.2709865 ADSCrossRefGoogle Scholar
  88. Karadag B, Cho S, Funaki I (2018a) Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster. J. Appl. Phys. 123(15):153302.  https://doi.org/10.1063/1.5023829 ADSCrossRefGoogle Scholar
  89. Karadag B, Cho S, Funaki I, Hamada Y, Komurasaki K (2018b) External discharge plasma thruster. J. Propul. Power 34(4):1093–1096.  https://doi.org/10.2514/1.B36900 CrossRefGoogle Scholar
  90. Katz I, Mikellides IG (2011) Neutral gas free molecular flow algorithm including ionization and walls for use in plasma simulations. J. Comput. Phys. 230(4):1454–1464.  https://doi.org/10.1016/j.jcp.2010.11.013 ADSCrossRefzbMATHGoogle Scholar
  91. Keidar M, Boyd ID (2001) Plasma flow and plasma–wall transition in Hall thruster channel. Phys. Plasma 8:5315–5322.  https://doi.org/10.1063/1.1421370 ADSCrossRefGoogle Scholar
  92. Keidar M, Boyd ID, Beilis II (2004) Modeling of a high-power thruster with anode layer. Phys. Plasma 11:1715.  https://doi.org/10.1063/1.1668642 ADSCrossRefGoogle Scholar
  93. Kim V (1998) Main physical features and processes determining the performance of stationary plasma thrusters. J. Propul. Power 14(5):736–743.  https://doi.org/10.2514/2.5335 CrossRefGoogle Scholar
  94. Kim H, Lim Y, Choe W, Park S, Seon J (2015) Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas. Appl. Phys. Lett. 106:154103.  https://doi.org/10.1063/1.4918654 ADSCrossRefGoogle Scholar
  95. Kim H, Choe W, Lim Y, Lee S, Park S (2017) Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas. Appl. Phys. Lett. 110:114101.  https://doi.org/10.1063/1.4978532 ADSCrossRefGoogle Scholar
  96. Kishi N (2017) Management analysis for the space industry. Space Policy 39–40:1–6.  https://doi.org/10.1016/j.spacepol.2017.03.006 ADSCrossRefGoogle Scholar
  97. Koizumi H, Komurasaki K, Arakawa Y (2008) Numerical prediction of wall erosion on a Hall thruster. Vacuum 83:67–71.  https://doi.org/10.1016/j.vacuum.2008.03.096 ADSCrossRefGoogle Scholar
  98. L. Grimaud, J. Vaudolon, S. Mazouffre, Design and characterization of a 200 W Hall thruster in magnetically shielded configuration. AIAA 2016-4832 (2016).  https://doi.org/10.2514/6.2016-4832
  99. Lee J, Seo M, Seon J, Lee HJ, Choe W (2011) Performance characteristics according to the channel length and magnetic fields of cylindrical Hall thusters. Appl. Phys. Lett. 99:131505.  https://doi.org/10.1063/1.3643435 ADSCrossRefGoogle Scholar
  100. Levchenko I, Beilis II, Keidar M (2016) Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv. Mater. Technol.  https://doi.org/10.1002/admt.201600008 CrossRefGoogle Scholar
  101. Levchenko I, Bazaka K, Keidar M, Xu S, Fang J (2017) Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale. Adv. Mater.  https://doi.org/10.1002/adma.201702226 CrossRefGoogle Scholar
  102. Levchenko I, Bazaka K, Baranov O, Mohan Sankaran R, Nomine A, Belmonte T, Xu S (2018a) Lightning under water: diverse reactive environments and evidence of synergistic effects for material treatment and activation. Appl. Phys. Rev. 5(2):021103.  https://doi.org/10.1063/1.5024865 ADSCrossRefGoogle Scholar
  103. Levchenko I, Bazaka K, Mazouffre S, Xu SY (2018b) Prospects and physical mechanisms for photonic space propulsion. Nat. Photon. 2:649.  https://doi.org/10.1038/s41566-018-0280-7 ADSCrossRefGoogle Scholar
  104. Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu SY (2018c) Advanced materials for next-generation spacecraft. Adv. Mater. 30:1802201.  https://doi.org/10.1002/adma.201802201 CrossRefGoogle Scholar
  105. Levchenko I, Bazaka K, Ding YJ, Raitses Y, Mazouffre S, Henning T, Klar PJ, Shinohara S, Schein J, Garrigues L, Kim M, Lev D, Taccogna F, Boswell RW, Charles C, Koizumi H, Shen Y, Scharlemann C, Keidar M, Xu SY (2018d) Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers. Appl. Phys. Rev. 5:011104.  https://doi.org/10.1063/1.5007734 ADSCrossRefGoogle Scholar
  106. Levchenko I, Keidar M, Cantrell J, Wu Y, Kuninaka H, Bazaka K, Xu S (2018e) Explore space using swarms of tiny satellites. Nature 562:185–187.  https://doi.org/10.1038/d41586-018-06957-2 ADSCrossRefGoogle Scholar
  107. Levchenko I, Xu S, Teel G, Mariotti D, Walker M, Keidar M et al (2018f) Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9(1):879.  https://doi.org/10.1038/s41467-017-02269-7 ADSCrossRefGoogle Scholar
  108. Levchenko I, Xu S, Mazouffre S, Keidar M, Bazaka K (2018g) Mars colonization: beyond getting there. Glob Challeng 2:1800062.  https://doi.org/10.1002/gch2.201800062 CrossRefGoogle Scholar
  109. Li H, Xia GJ, Mao W, Liu JW, Ding YJ, Yu DR, Wang XG (2018) Experimental and numerical investigation of a Hall thruster with a chamfered channel wall. Chin. Phys. B 27(10):105209.  https://doi.org/10.1088/1674-1056/27/10/105209 ADSCrossRefGoogle Scholar
  110. Li WB, Li H, Ding YJ, Wei LQ, Gao Q, Yan SL, Meng TH, Zhu ZM (2019) Study on electrons conduction paths in Hall thruster ignition processes with the cathode located inside and outside the magnetic separatrix. Acta Astron. 155:153–159.  https://doi.org/10.1016/j.actaastro.2018.11.027 CrossRefGoogle Scholar
  111. Linnell JA, Gallimore AD (2006) Efficiency analysis of a Hall thruster operating with Krypton and Xenon. J. Propul. Power 22(6):1402–1412.  https://doi.org/10.2514/1.19613 CrossRefGoogle Scholar
  112. M. Nakles, W. Hargus, J. Delgado, R. Corey, A performance and plume comparison of Xenon and Krypton propellant on the SPT-100. AIAA 2012-4116 (2012).  https://doi.org/10.2514/6.2012-4116
  113. Martinez-Sanchez M, Pollard JE (1998) Spacecraft electric propulsion-an overview. J. Propul. Power 4:688–699.  https://doi.org/10.2514/2.5331 CrossRefGoogle Scholar
  114. Mazouffre S (2016) Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sour. Sci. Technol. 25(3):033002.  https://doi.org/10.1088/0963-0252/25/3/033002 ADSCrossRefGoogle Scholar
  115. Mazouffre S, Vaudolon J, Largeau G, Hénaux C, Rossi A, Harribey D (2014a) Visual evidence of magnetically shielded with the PPS-Flex Hall thruster. IEEE T. Plasma Sci. 42(10):2668–2669.  https://doi.org/10.1109/TPS.2014.2331180 ADSCrossRefGoogle Scholar
  116. Mazouffre S, Tsikata S, Vaudolon J (2014b) Development and experimental characterization of a Wall-less Hall thruster. J. Appl. Phys. 116:243302.  https://doi.org/10.1063/1.4904965 ADSCrossRefGoogle Scholar
  117. Mazouffre S, Bourgeois G, Vaudolon J, Garrigues L, Hénaux C, Harribey D, Vilamot R, Rossi A, Zurbach S, Méhauté DL (2015) Development and testing of Hall thruster with flexible magnetic field configuration. J. Propul. Power 31(4):1167–1174.  https://doi.org/10.2514/1.B35417 CrossRefGoogle Scholar
  118. Meng Y, Mao HK, Eng PJ, Trainor TP, Newville M, Hu MY, Kao CC, Shu JF, Hausermann D, Hemley RJ (2014) The formation of sp3 bonding in compressed BN. Nat. Mater. 3(2):111–114.  https://doi.org/10.1038/nmat1060 ADSCrossRefGoogle Scholar
  119. Mikellides IG, Katz I (2012) Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh. Phys. Rev. E 86(4):046703.  https://doi.org/10.1103/PhysRevE.86.046703 ADSCrossRefGoogle Scholar
  120. Mikellides IG, Katz I, Hofer RR, Goebel DM, Grys KD, Mathers A (2011) Magnetically shielded of the channel walls in a Hall plasma accelerator. Phys. Plasma. 18(3):033501.  https://doi.org/10.1063/1.3551583 ADSCrossRefGoogle Scholar
  121. Mikellides IG, Katz I, Hofer RR, Goebel DM (2013a) Magnetically shielded of walls from the unmagnetized ion beam in a Hall thruster. Appl. Phys. Lett. 102(2):023509.  https://doi.org/10.1063/1.4776192 ADSCrossRefGoogle Scholar
  122. Mikellides IG, Katz I, Hofer RR (2014) Magnetically shielded of a laboratory Hall thruster. I. Theory and validation. J. Appl. Phys. 115(4):203.  https://doi.org/10.1063/1.4862313 CrossRefGoogle Scholar
  123. Morozov AI, Savelyev VV (2001) Fundamentals of stationary plasma thruster theory. Rev. Plasma Phys. 21:203–391ADSCrossRefGoogle Scholar
  124. Oluwafemi FA, De La Torre A, Afolayan EM, Olalekan-Ajayi BM, Dhital B, Mora-Almanza JG, Potrivitu G, Creech J, Rivolta A (2018) Space food and nutrition in a long term manned mission. Adv. Astron. Sci. Technol. 1:1–21.  https://doi.org/10.1007/s42423-018-0016-2 CrossRefGoogle Scholar
  125. Parker JB, Raitses Y, Fisch NJ (2010) Transition in electron transport in a cylindrical Hall thruster. Appl. Phys. Lett. 97:091501.  https://doi.org/10.1063/1.3486164 ADSCrossRefGoogle Scholar
  126. Petro EM, Sedwick RJ (2017) Survey of moderate-power electric propulsion systems. J. Spacecraft Rockets 54(3):529–541.  https://doi.org/10.2514/1.A33647 ADSCrossRefGoogle Scholar
  127. Potrivitu G, Joussot R, Mazouffre S (2018) Anode position influence on discharge modes of a LaB6 cathode in diode configuration. Vacuum 151:122–132.  https://doi.org/10.1016/j.vacuum.2018.02.010 ADSCrossRefGoogle Scholar
  128. P.Y. Peterson, A.D. Gallimore, J.M. Hass, Experimental investigation of a Hall thruster internal magnetic field topograghy. IEPC 2001-030 (2001)Google Scholar
  129. P.Y. Peterson, D.H. Manzella, Investigation of the erosion characteristics of a laboratory Hall thruster. AIAA 2003-5005 (2003).  https://doi.org/10.2514/6.2003-5005
  130. R. Shastry, A.D. Gallimore, R.R. Hofer, Experimental characterization of the near-wall plasma in a 6-kW Hall thruster and comparison to simulation. AIAA 2011-5589 (2011).  https://doi.org/10.2514/6.2011-5589
  131. Raitses Y, Fisch NJ (2001) Parametric investigations of a nonconventional Hall thruster. Phys. Plasma 8:2579.  https://doi.org/10.1063/1.1355318 ADSCrossRefGoogle Scholar
  132. Raitses Y, Dorf LA, Litvak AA, Fisch NJ (2000) Plume reduction in segmented electrode Hall thruster. J. Appl. Phys. 88:1263.  https://doi.org/10.1063/1.373813 ADSCrossRefGoogle Scholar
  133. Raitses Y, Staack D, Keidar M, Fisch NJ (2005) Electron-wall interaction in Hall thrusters. Phys. Plasma 12:1–9.  https://doi.org/10.1063/1.1891747 CrossRefGoogle Scholar
  134. Raitses Y, Smirnov A, Fisch NJ (2007) Enhanced performance of CHTs. Appl. Phys. Lett. 90:221502.  https://doi.org/10.1063/1.2741413 ADSCrossRefGoogle Scholar
  135. Raitses Y, Smirnov A, Fisch NJ (2009) Effects of enhanced cathode electron emission on Hall thruster operation. Phys. Plasma 16:057106.  https://doi.org/10.1063/1.3131282 ADSCrossRefGoogle Scholar
  136. Raitses Y, Merino E, Fisch NJ (2010) Cylindrical Hall thrusters with permanent magnets. J. Appl. Phys. 108:093307.  https://doi.org/10.1063/1.3499694 ADSCrossRefGoogle Scholar
  137. Roy S, Pandey BP (2002) Plasma–wall interaction inside a Hall thruster. J. Plasma Phys. 68:305–319.  https://doi.org/10.1017/S0022377802002027 ADSCrossRefGoogle Scholar
  138. R.R. Hofer, B.A. Jorns, J.E. Polk, I.G. Mikellides, Wear test of a magnetically shielded Hall thruster at 3000 seconds specific impulse. IEPC 2013-033 (2013)Google Scholar
  139. R.R. Hofer, D.M. Goebel, I.G. Mikellides, I. Katz, Design of a laboratory Hall thruster with magnetically shielded channel walls, phase II: experiments. AIAA 2012-3788 (2012).  https://doi.org/10.2514/6.2012-3788
  140. R.R. Hofer, High-specific impulse operation of the BPT-4000 Hall Thruster for NASA science mission. AIAA 2010-6623 (2010).  https://doi.org/10.2514/6.2010-6623
  141. R.R. Hofer, Magnetically-conformed, variable area discharge chamber for hall thruster, and method, US Patent 8,407,979 (2013)Google Scholar
  142. R.R. Hofer, S.E. Cusson, R.B. Lobbia, A.D. Gallimore, The H9 magnetically shielded Hall thruster. IEPC 2017-232 (2017)Google Scholar
  143. R.W. Conversano, R.B. Lobbia, K.C. Tilley, D.M. Goebel, S.W. Reilly, Development and initial performance testing of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode. IEPC 2017-64 (2017)Google Scholar
  144. S. Barral, K. Makowski, Z. Peradzyński, N. Gascon, M. Dudeck, Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity. Phys. Plasma 10, 4137 (2003).  https://doi.org/10.1063/1.1611881 ADSCrossRefGoogle Scholar
  145. S. Mazouffre, F. Dubois, L. Albarede, D. Pagnon, M. Touzeau, M. Dudeck, Plasma induced erosion phenomena in a Hall thruster. In: International conference on recent advances in space technologies, RAST ‘03. Proceedings of 69-74 (2003)  https://doi.org/10.1109/rast.2003.1303393
  146. S. Mazouffre, S. Tsikata, J. Vaudolon, Development and characterization of a Wall-less Hall thruster. AIAA 2014-3513 (2014).  https://doi.org/10.2514/6.2014-3513
  147. S. Roy, B.P. Pandey, Modeling the effect of plasma–wall interaction in a Hall thruster. AIAA 2003-493 (2003).  https://doi.org/10.2514/6.2003-493
  148. S. Y. Cheng, Modeling of Hall thruster lifetime and erosion mechanisms. Ph.D Thesis, Massachusetts Institute of Technology. pp. 79–100 (2007)Google Scholar
  149. S.E. Cusson, R.R. Hofer, R.B. Lobbia, B.A. Jorns, A.D. Gallimore, Performance of the H9 magnetically shielded Hall thrusters. IEPC 2017-239 (2017)Google Scholar
  150. Seah MP (2005) An accurate semi-empirical equation for sputtering yields, II: for Neon, Argon and Xenon ions. Nucl. Instrum. Methods B 229:348–358.  https://doi.org/10.1016/j.nimb.2004.12.129 ADSCrossRefGoogle Scholar
  151. Seiler H (1983) Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54:R1.  https://doi.org/10.1063/1.332840 ADSCrossRefGoogle Scholar
  152. Seo M, Lee J, Seon J, Lee HJ, Choe W (2013a) Effect of the annular region on the performance of a cylindrical Hall plasma thruster. Phys. Plasma 20:023507.  https://doi.org/10.1063/1.4793741 ADSCrossRefGoogle Scholar
  153. Seo M, Lee J, Seon J, Lee HJ, Choe W (2013b) Radial scale effect on the performance of low-power cylindrical Hall plasma thrusters. Appl. Phys. Lett. 103:133501.  https://doi.org/10.1063/1.4820774 ADSCrossRefGoogle Scholar
  154. Shi Y, Raitses Y, Diallo A (2018) Controlling azimuthal spoke modes in a CHT using a segmented anode. Plasma Sources Sci. Technol. 27:104006.  https://doi.org/10.1088/1361-6595 ADSCrossRefGoogle Scholar
  155. Smirnov A, Raitses Y, Fisch NJ (2002) Parametric investigation of miniaturized cylindrical and annular Hall thrusters. J. Appl. Phys. 92:5673.  https://doi.org/10.1063/1.1515106 ADSCrossRefGoogle Scholar
  156. Smirnov A, Raitses Y, Fisch NJ (2004) Plasma measurements in a 100 W CHT. J. Appl. Phys. 95:2283.  https://doi.org/10.1063/1.1642734 ADSCrossRefGoogle Scholar
  157. Szocik K, Lysenko-Ryba K, Banas S, Mazur S (2016) Political and legal challenges in a Mars colony. Space Policy 38:27–29.  https://doi.org/10.1016/j.spacepol.2016.05.012 ADSCrossRefGoogle Scholar
  158. Thomas S, Tyson CB, Steven BB, Gregory BF (2017) Thompson, influence of surface roughness on secondary electron emission from graphite. J. Vac. Sci. Technol., A 35:041404.  https://doi.org/10.1116/1.4986629 CrossRefGoogle Scholar
  159. Tian Z, Duan XM, Yang ZH, Ye SQ, Jia DC, Zhou Y (2016) Microstructure and erosion resistance of in situ SiAlON reinforced BN-SiO2 composite ceramics. J. Wuhan Univ. Technol. 31(2):315–320.  https://doi.org/10.1007/s11595-016-1369-9 CrossRefGoogle Scholar
  160. Vaudolon J, Mazouffre S, Hénaux C, Harribey D, Rossi A (2015) Optimization of a Wall-less Hall thruster. Appl. Phys. Lett. 107:174103.  https://doi.org/10.1063/1.4932196 ADSCrossRefGoogle Scholar
  161. Yamamura Y, Tawara H (1996) Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atom. Data Nucl. Data 62:149–253.  https://doi.org/10.1006/adnd.1996.0005 ADSCrossRefGoogle Scholar
  162. Zhang GJ, Yang JF, Ando M, Ohji T (2002) Nonoxide-boron nitride composites: in situ synthesis, microstructure and properties. J. Eur. Ceram. Soc. 22:2551–2554CrossRefGoogle Scholar
  163. Zhou Y, Duan XM, Jia DC, Yang ZH, Meng QC, Yu Y, Yu DR, Ding YJ (2011) Mechanical properties and plasma erosion resistance of ZrO2p(3Y)/BN-SiO2 ceramic composites under different sintering temperature. IOP Conf. Ser. Mater. Sci. Eng. 18:202003.  https://doi.org/10.1088/1757-899x/18/20/202003 CrossRefGoogle Scholar
  164. Zhurin VV, Kaufman HR, Robinson RS (1999) Physics of closed drift thrusters. Plasma Source Sci. Technol. 8:R1–R20.  https://doi.org/10.1088/0963-0252/8/1/021 ADSCrossRefGoogle Scholar
  165. Zypries B (2017) Space, the public, and politics. Space Policy 41:73–74.  https://doi.org/10.1016/j.spacepol.2017.01.005 ADSCrossRefGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2019

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHeilongjiangPeople’s Republic of China
  2. 2.Electric Drive and Propulsion Technology LabHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations