Advertisement

Direct current arc plasma thrusters for space applications: basic physics, design and perspectives

  • O. BaranovEmail author
  • I. LevchenkoEmail author
  • S. Xu
  • X. G. Wang
  • H. P. Zhou
  • K. BazakaEmail author
Topical Collection: Review Paper Recent Progress in Physics of Plasma-Based Space Propulsion
  • 40 Downloads
Part of the following topical collections:
  1. Recent Progress in Physics of Plasma-Based Space Propulsion

Abstract

Renewed interest in space exploration and aspirations for colonization of Mars, Moon and possibly other extra-terrestrial bodies puts pressure on the present-day space technology to become more efficient. Space engines, or thrusters, are the key element of any spacecraft and thus, continuous improvement in thruster design and performance is needed to realize the mankind’s goal of becoming a truly space faring civilization. Space micropropulsion systems that utilize plasma and electric fields to accelerate and expel mass to produce reactive thrust are advanced propulsion systems that can deliver very high specific impulse. In this review, we outline basic physical principles and design approaches for future direct-arc plasma propulsion systems. We then examine major obstacles and prospects for application of direct-arc plasmas in this type of space thrusters.

Keywords

Arc plasma propulsion Arc discharge Plasma acceleration Space propulsion High-density plasma 

Notes

Acknowledgements

This work was jointly supported by the National Aerospace University, Kharkov, Ukraine; Plasma Sources and Application Centre/Space Propulsion Centre Singapore, NIE, and Institute of Advanced Studies, Singapore; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia; Harbin Institute of Technology, China; School of Materials and Energy, University of Electronic Science and Technology of China; National Research Foundation and AcRF (Rp6/16 Xs), Singapore; I. L. acknowledges support from the School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology.

References

  1. K. Aheieva, S. Fuchikami, M. Nakamoto, K. Toyoda, M. Cho, IEEE Trans. Plasma Sci. 44(1), 100–106 (2016).  https://doi.org/10.1109/TPS.2015.2500601 CrossRefADSGoogle Scholar
  2. I.I. Aksenov, A.N. Belokhvostikov, V.G. Padalka, N.S. Repalov, V.M. Khoroshikh, Plasma Phys. Control. Fusion 28(5), 761–770 (1986).  https://doi.org/10.1088/0741-3335/28/5/002 CrossRefADSGoogle Scholar
  3. D.F. Alferov, Y.I. Londer, K.N. Ulyanov, IEEE Trans. Plasma Sci. 37(8), 1403–1407 (2009).  https://doi.org/10.1109/TPS.2009.2018823 CrossRefADSGoogle Scholar
  4. B. Alterkop, E. Gidalevich, S. Goldsmith, R.L. Boxman, J. Appl. Phys. 79(9), 6791–6802 (1996).  https://doi.org/10.1063/1.361500 CrossRefADSGoogle Scholar
  5. B. Alterkop, E. Gidalevich, S. Goldsmith, R.L. Boxman, Fluid model of current-carrying and magnetized fully ionized plasma confined by two coaxial cylinder electrodes. J. Phys. D: Appl. Phys. 41, 105211 (2008).  https://doi.org/10.1088/0022-3727/41/10/105211 CrossRefADSGoogle Scholar
  6. A. Anders, IEEE Trans. Plasma Sci. 26(1), 118–119 (1998).  https://doi.org/10.1109/27.659541 CrossRefADSGoogle Scholar
  7. A. Anders, IEEE Trans. Plasma Sci. 33, 1456–1464 (2005).  https://doi.org/10.1109/TPS.2005.856488 CrossRefADSGoogle Scholar
  8. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008)CrossRefGoogle Scholar
  9. A. Anders, Plasma Sources Sci. Technol. 21, 035014 (2012).  https://doi.org/10.1088/0963-0252/21/3/035014 CrossRefADSGoogle Scholar
  10. A. Anders, Surf. Coat. Technol. 257(25), 308–325 (2014).  https://doi.org/10.1016/j.surfcoat.2014.08.043 CrossRefGoogle Scholar
  11. A. Anders, G.Y. Yushkov, Appl. Phys. Lett. 80(14), 2457–2459 (2002).  https://doi.org/10.1063/1.1468271 CrossRefADSGoogle Scholar
  12. A. Anders, G. Yushkov, Appl. Phys. Lett. 91, 091502 (2007).  https://doi.org/10.1063/1.2776858 CrossRefADSGoogle Scholar
  13. A. Anders, S. Anders, B. Jüttner, I. Brown, IEEE Trans. Plasma Sci. 21(3), 305–311 (1993).  https://doi.org/10.1109/27.277556 CrossRefADSGoogle Scholar
  14. A. Anders, S. Anders, I.G. Brown, Plasma Sources Sci. Technol. (1995).  https://doi.org/10.1088/0963-0252/4/1/001 CrossRefGoogle Scholar
  15. A. Anders, S. Anders, B. Juttner, H. Luck, High-resolution imaging of vacuum arc cathode spots. IEEE Trans. Plasma Sci. 24(1), 69–70 (1996).  https://doi.org/10.1109/27.491695 CrossRefADSGoogle Scholar
  16. A. Anders, J. Schein, N. Qi, Rev. Sci. Instrum. 71(2), 827–829 (2000).  https://doi.org/10.1063/1.1150305 CrossRefADSGoogle Scholar
  17. A. Anders, G.Yu. Yushkov, J. Appl. Phys. 91(8), 4824 (2002).  https://doi.org/10.1063/1.1459619 CrossRefADSGoogle Scholar
  18. A. Anders, E.M. Oks, G. Yu, Yushkov. Appl. Phys. Lett. 86, 211503 (2005a).  https://doi.org/10.1063/1.1937994 CrossRefADSGoogle Scholar
  19. A. Anders, E.M. Oks, G.Yu. Yushkov, K.P. Savkin, I.G. Brown, A.G. Nikolaev, IEEE Trans. Plasma Sci. 33(5), 1532 (2005b).  https://doi.org/10.1109/TPS.2005.856502 CrossRefADSGoogle Scholar
  20. A. Anders, E. Oks, G. Yushkov, J. Appl. Phys. 102, 043303 (2007).  https://doi.org/10.1063/1.2769789 CrossRefADSGoogle Scholar
  21. M.F. Artamonov, V.I. Krasov, V.L. Paperny, J. Phys. D Appl. Phys. (2001).  https://doi.org/10.1088/0022-3727/34/23/307 CrossRefGoogle Scholar
  22. O. Baranov, M. Romanov, Plasma Process. Polym. 5, 256–262 (2008).  https://doi.org/10.1002/ppap.200700160 CrossRefGoogle Scholar
  23. O. Baranov, M. Romanov, Plasma Process. Polym. 6, 95–100 (2009).  https://doi.org/10.1002/ppap.200800131 CrossRefGoogle Scholar
  24. O. Baranov, M. Romanov, K. Ostrikov, Phys. Plasmas 16, 063505 (2009a).  https://doi.org/10.1063/1.3153554 CrossRefADSGoogle Scholar
  25. O. Baranov, M. Romanov, K. Ostrikov, Phys. Plasmas 16, 053505 (2009b).  https://doi.org/10.1063/1.3130267 CrossRefADSGoogle Scholar
  26. O. Baranov, M. Romanov, M. Wolter, S. Kumar, X. Zhong, K. Ostrikov, Phys. Plasmas 17, 053509 (2010).  https://doi.org/10.1063/1.3431098 CrossRefADSGoogle Scholar
  27. O. Baranov, M. Romanov, S. Kumar, X.X. Zhong, K. Ostrikov, J. Appl. Phys. 109, 063304 (2011).  https://doi.org/10.1063/1.3553853 CrossRefADSGoogle Scholar
  28. O. Baranov, M. Romanov, J. Fang, U. Cvelbar, K. Ostrikov, J. Appl. Phys. 112, 073302 (2012).  https://doi.org/10.1063/1.4757022 CrossRefADSGoogle Scholar
  29. O.O. Baranov, J. Fang, A.E. Rider, S. Kumar, K. Ostrikov, IEEE Trans. Plasma Sci. 41(12), 3640–3644 (2013).  https://doi.org/10.1109/TPS.2013.2286405 CrossRefADSGoogle Scholar
  30. O. Baranov, J. Fang, M. Keidar, X. Lu, U. Cvelbar, K. Ostrikov, IEEE Trans. Plasma Sci. 42(10), 2464–2465 (2014a).  https://doi.org/10.1109/TPS.2014.2323263 CrossRefADSGoogle Scholar
  31. O. Baranov, X. Zhong, J. Fang, S. Kumar, S. Xu, U. Cvelbar, D. Mariotti, K. Ostrikov, IEEE Trans. Plasma Sci. 42(10), 2518–2519 (2014b).  https://doi.org/10.1109/TPS.2013.2295626 CrossRefADSGoogle Scholar
  32. O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko, Appl. Phys. Rev. 4, 041302 (2017).  https://doi.org/10.1063/1.5007869 CrossRefADSGoogle Scholar
  33. O. Baranov, S. Xu, K. Ostrikov, B.B. Wang, U. Cvelbar, K. Bazaka, I. Levchenko, Rev. Mod. Plasma Phys. 2, 4 (2018a).  https://doi.org/10.1007/s41614-018-0016-7 CrossRefADSGoogle Scholar
  34. O. Baranov, U. Cvelbar, K. Bazaka, IEEE Trans. Plasma Sci. 42, 304–310 (2018b).  https://doi.org/10.1109/TPS.2017.2778880 CrossRefADSGoogle Scholar
  35. O. Baranov, S. Xu, L. Xu, S. Huang, J.W.M. Lim, U. Cvelbar, I. Levchenko, K. Bazaka, I.E.E.E. Trans, Plasma Sci. 42, 230–238 (2018c).  https://doi.org/10.1109/TPS.2017.2773073 CrossRefGoogle Scholar
  36. O. Baranov, I. Levchenko, J.M. Bell, J.W.M. Lim, S. Huang, L. Xu, B. Wang, D.U.B. Aussems, S. Xu, K. Bazaka, From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring. Mater. Horiz. 5, 765–798 (2018d).  https://doi.org/10.1039/C8MH00326B CrossRefGoogle Scholar
  37. O. Baranov, I. Levchenko, S. Xu, J.W.M. Lim, U. Cvelbar, K. Bazaka, Formation of vertically oriented graphenes: what are the key drivers of growth? 2D Mater 5, 044002 (2018e).  https://doi.org/10.1088/2053-1583/aad2bc CrossRefGoogle Scholar
  38. S.N. Bathgate, M.M.M. Bilek, D.R. McKenzie, Plasma Sci. Technol. 19, 083001 (2017)CrossRefADSGoogle Scholar
  39. O. Bazaka, K. Bazaka, Surface modification of biomaterials for biofilm control. Biomater. Med. Device Assoc. Infect. 6, 103–132 (2014).  https://doi.org/10.1533/9780857097224.2.103 CrossRefGoogle Scholar
  40. K. Bazaka, M.V. Jacob, Synthesis of radio frequency plasma polymerized non-synthetic Terpinen-4-ol thin films. Mater. Lett. 63, 1594–1597 (2009).  https://doi.org/10.1016/j.matlet.2009.04.025 CrossRefGoogle Scholar
  41. K. Bazaka, M.V. Jacob, R.J. Crawford, E.P. Ivanova, Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 7, 2015–2028 (2011a).  https://doi.org/10.1016/j.actbio.2010.12.024 CrossRefGoogle Scholar
  42. K. Bazaka, M.V. Jacob, B.F. Bowden, Optical and chemical properties of polyterpenol thin films deposited via plasma-enhanced chemical vapor deposition. J. Mater. Res. 26, 1018–1025 (2011b).  https://doi.org/10.1557/jmr.2011.23 CrossRefADSGoogle Scholar
  43. K. Bazaka, M.V. Jacob, K. Ostrikov, Sustainable life cycles of natural-precursor-derived nanocarbons. Chem. Rev. 116, 163–214 (2016).  https://doi.org/10.1021/acs.chemrev.5b00566 CrossRefGoogle Scholar
  44. K. Bazaka, J. Ahmad, M. Oelgemöller, A. Uddin, M.V. Jacob, Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV. Sci. Rep. 7, 45599 (2017).  https://doi.org/10.1038/srep45599 CrossRefADSGoogle Scholar
  45. K. Bazaka, O. Baranov, U. Cvelbar, B. Podgornik, Y. Wang, S. Huang, L. Xu, J.W.M. Lim, I. Levchenko, S. Xu, Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. Nanoscale 10, 17494–17511 (2018).  https://doi.org/10.1039/C8NR06502K CrossRefGoogle Scholar
  46. I.I. Beilis, IEEE Trans. Plasma Sci. 13(5), 288 (1985).  https://doi.org/10.1109/TPS.1985.4316422 CrossRefADSGoogle Scholar
  47. I.I. Beilis, Cathode arc plasma flow in a Knudsen layer. High Temp. 24, 319–325 (1986)Google Scholar
  48. I.I. Beilis, IEEE Trans. Plasma Sci. 29(5), 657 (2001).  https://doi.org/10.1109/27.964451 CrossRefADSGoogle Scholar
  49. I.I. Beilis, IEEE Trans. Plasma Sci. 30(6), 2124 (2002).  https://doi.org/10.1109/TPS.2002.807330 CrossRefADSGoogle Scholar
  50. I.I. Beilis, Contrib. Plasma Phys. 43(3–4), 224–236 (2003).  https://doi.org/10.1002/ctpp.200310018 CrossRefADSGoogle Scholar
  51. I.I. Beilis, Appl. Phys. Lett. 97, 121501 (2010).  https://doi.org/10.1063/1.3491446 CrossRefADSGoogle Scholar
  52. I.I. Beilis, IEEE Trans. Plasma Sci. 41(8), 1979 (2013).  https://doi.org/10.1109/TPS.2013.2256472 CrossRefADSGoogle Scholar
  53. I.I. Beilis, IEEE Trans. Plasma Sci. 43(1), 165–172 (2015).  https://doi.org/10.1109/TPS.2014.2308929 CrossRefADSGoogle Scholar
  54. I.I. Beilis, Phys. Plasmas 23, 093501 (2016).  https://doi.org/10.1063/1.4961920 CrossRefADSGoogle Scholar
  55. I.I. Beilis, M. Keidar, R.L. Boxman, S. Goldsmith, J. Appl. Phys. 83(2), 709–717 (1998).  https://doi.org/10.1063/1.366742 CrossRefADSGoogle Scholar
  56. I.I. Beilis, M. Keidar, R.L. Boxman, S. Goldsmith, J. Appl. Phys. 85(3), 1358–1365 (1999).  https://doi.org/10.1063/1.369267 CrossRefADSGoogle Scholar
  57. I. Beilis, Y. Koulik, Y. Yankelevich, D. Arbilly, R.L. Boxman, IEEE Trans. Plasma Sci. 43(8), 2223–2328 (2015a).  https://doi.org/10.1109/TPS.2015.2432577 CrossRefGoogle Scholar
  58. I.I. Beilis, B. Sagi, V. Zhitomirsky, R.L. Boxman, J. Appl. Phys. 117, 233303 (2015b).  https://doi.org/10.1063/1.4922862 CrossRefADSGoogle Scholar
  59. I.I. Beilis, Y. Koulik, R.L. Boxman, IEEE Trans. Plasma Sci. 45(8), 2115 (2017).  https://doi.org/10.1109/TPS.2016.2645863 CrossRefADSGoogle Scholar
  60. M.S. Benilov, L.G. Benilova, J. Phys. D Appl. Phys. 43, 345204 (2010).  https://doi.org/10.1088/0022-3727/43/34/345204 CrossRefGoogle Scholar
  61. A. Blanchet, L. Herrero, L. Voisin, in 35th International Electric Propulsion Conference, Georgia Institute of Technology, Atlanta, Georgia, USA October 8–12 (2017)Google Scholar
  62. A. Bogaerts, E. Bultinck, I. Kolev, L. Schwaederle, K. Van Aeken, G. Buyle, D. Depla, J. Phys. D Appl. Phys. (2009).  https://doi.org/10.1088/0022-3727/42/19/194018 CrossRefGoogle Scholar
  63. D. Bootkula, B. Supsermpol, N. Saenphinit, C. Aramwit, S. Intarasiri, Appl. Surf. Sci. 310, 284–292 (2014).  https://doi.org/10.1016/j.apsusc.2014.03.059 CrossRefADSGoogle Scholar
  64. R.L. Boxman, V.N. Zhitomirsky, Rev. Sci. Instrum. 77, 021101 (2006).  https://doi.org/10.1063/1.2169539 CrossRefADSGoogle Scholar
  65. R.L. Boxman, D. Sanders, P. Martin (eds.), Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications (Noyes Publications, Park Ridge, 1995)Google Scholar
  66. R.L. Boxman, I.I. Beilis, E. Gidalevich, V.N. Zhitomirsky, IEEE Trans. Plasma Sci. 33(5), 1618 (2005).  https://doi.org/10.1109/TPS.2005.856532 CrossRefADSGoogle Scholar
  67. N. St. J. Braithwaite, Plasma Sources Sci. Technol. (2000).  https://doi.org/10.1088/0963-0252/9/4/307 CrossRefADSGoogle Scholar
  68. I.G. Brown, Rev. Sci. Instrum. 65, 3061 (1994).  https://doi.org/10.1063/1.1144756 CrossRefADSGoogle Scholar
  69. I. Brown, E. Oks, IEEE Trans. Plasma Sci. 251, 222 (1997).  https://doi.org/10.1109/27.650897 CrossRefGoogle Scholar
  70. I.G. Brown, H. Shiraishi, IEEE Trans. Plasma Sci. 18(1), 170 (1990).  https://doi.org/10.1109/27.45521 CrossRefADSGoogle Scholar
  71. E. Byon, A. Anders, J. Appl. Phys. 93(4), 1899–1906 (2003).  https://doi.org/10.1063/1.1539535 CrossRefADSGoogle Scholar
  72. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1984)CrossRefGoogle Scholar
  73. L. Chen, D. Jin, X. Tan, J. Dai, L. Cheng, S. Hu, Vacuum 85, 622 (2010).  https://doi.org/10.1016/j.vacuum.2010.09.005 CrossRefADSGoogle Scholar
  74. B.F. Coll, D.M. Sanders, Surf. Coat. Technol. 81, 42–51 (1996).  https://doi.org/10.1016/0257-8972(95)02654-1 CrossRefGoogle Scholar
  75. D. Chiu, J. Lukas, G. Teal, T. Zhuang, A. Shashurin, M. Keidar, in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14–17, San Jose, CA (2013)Google Scholar
  76. J.E. Daalder, J. Phys. D Appl. Phys. 9, 2379–2395 (1976).  https://doi.org/10.1088/0022-3727/9/16/009 CrossRefADSGoogle Scholar
  77. R.C. Davidson, Phys. Fluids 19(8), 1189–1202 (1976).  https://doi.org/10.1063/1.861601 CrossRefADSGoogle Scholar
  78. M.J. Diaz, L. Garrigues, G.J.M. Hagelaar, F. Gaboriau, L. Liard, L. Herrero, A. Blanchet, in Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July 4–10 (2015)Google Scholar
  79. S. Dushman, Scientific Foundation of Vacuum Technique (Wiley, New York, 1962)Google Scholar
  80. A.P. Ehiasarian, PEh Hovsepian, R. New, J. Valter, J. Phys. D Appl. Phys. 37, 2101–2106 (2004).  https://doi.org/10.1088/0022-3727/37/15/008 CrossRefADSGoogle Scholar
  81. D.Y. Fang, J. Phys. D Appl. Phys. (1982).  https://doi.org/10.1088/0022-3727/15/5/013 CrossRefGoogle Scholar
  82. J. Fang, I. Levchenko, K.K. Ostrikov, Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes. Sci. Technol. Adv. Mater. 15, 045004 (2014a).  https://doi.org/10.1088/1468-6996/15/4/045004 CrossRefGoogle Scholar
  83. J. Fang, I. Levchenko, T. van der Laan, S. Kumar, K. Ostrikov, Multipurpose nanoporous alumina–carbon nanowall bi-dimensional nano-hybrid platform via catalyzed and catalyst-free plasma CVD. Carbon 78, 627–632 (2014b).  https://doi.org/10.1016/j.carbon.2014.07.053 CrossRefGoogle Scholar
  84. D.C. Ferguson, B.V. Vayner, J.T. Galofaro, G. Barry Hillard, J. Vaughn, T. Schneider, NASA GRC and MSFC space plasma arc testing procedures. IEEE Trans. Plasma Sci. 34(5), 1948–1958 (2006).  https://doi.org/10.1109/TPS.2006.879093 CrossRefADSGoogle Scholar
  85. J. Foster, T. Haag, M. Patterson, G. Williams, J. Sovey, C. Carpenter, H. Kamhawi, S. Malone, F. Elliot, in NASA/TM—2004-213194, 40th Joint Propulsion Conference and Exhibition, July (2004)Google Scholar
  86. J. Fu, S. Jia, T. Lan, IEEE Trans. Plasma Sci. 29(5), 734–737 (2011).  https://doi.org/10.1109/27.964465 CrossRefADSGoogle Scholar
  87. M. Galonska, R. Hollinger, I.A. Krinberg, P. Spaedtke, IEEE Trans. Plasma Sci. 33(5), 1542–1547 (2005).  https://doi.org/10.1109/TPS.2005.856504 CrossRefADSGoogle Scholar
  88. B.K. Gan, M.M.M. Bilek, D.R. McKenzie, P.D. Swift, G. McCredie, Plasma Sources Sci. Technol. (2003).  https://doi.org/10.1088/0963-0252/12/4/302 CrossRefGoogle Scholar
  89. S. Goldsmith, Surf. Coat. Technol. 201, 3993–3999 (2006).  https://doi.org/10.1016/j.surfcoat.2006.08.007 CrossRefGoogle Scholar
  90. S.P. Gorbunov, V.P. Krasov, V.L. Paperny, A.S. Savyelov, Flow of multiple charged accelerated metal ions from low-inductance vacuum spark. J. Phys. D Appl. Phys. 39, 5002–5007 (2006).  https://doi.org/10.1088/0022-3727/39/23/016 CrossRefADSGoogle Scholar
  91. E. Hantzsche, IEEE Trans. Plasma Sci. 31(5), 779 (2003).  https://doi.org/10.1109/TPS.2003.818412 CrossRefADSGoogle Scholar
  92. W. Hartmann, A. Lawall, R. Renz, N. Wenzel, W. Wietzorek, in 23 International Symposium on Discharges and Electrical Insulation in Vacuum – Bucharest (2008)Google Scholar
  93. A.C. Hee, Y. Zhao, S.S. Jamali, P.J. Martin, A. Bendavid, H. Peng, X. Cheng, Thin Solid Films 636, 54–62 (2017).  https://doi.org/10.1016/j.tsf.2017.05.030 CrossRefADSGoogle Scholar
  94. M.V. Jacob, R.S. Rawat, B. Ouyang, K. Bazaka, D.S. Kumar, D. Taguchi, M. Iwamoto, R. Neupane, O.K. Varghese, Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett. 15, 5702–5708 (2015).  https://doi.org/10.1021/acs.nanolett.5b01363 CrossRefADSGoogle Scholar
  95. S. Jia, Z. Shi, L. Wang, J. Phys. D: Appl. Phys. (2014).  https://doi.org/10.1088/0022-3727/47/40/403001 CrossRefGoogle Scholar
  96. B. Jüttner, J. Phys. D Appl. Phys. 34, R103 (2001).  https://doi.org/10.1088/0022-3727/34/17/202 CrossRefADSGoogle Scholar
  97. B. Jüttner, I. Kleberg, J. Phys. D Appl. Phys. (2000).  https://doi.org/10.1088/0022-3727/33/16/315 CrossRefGoogle Scholar
  98. M. Keidar, M.B. Schulman, IEEE Trans. Plasma Sci. 28(1), 347–350 (2000).  https://doi.org/10.1109/27.842930 CrossRefADSGoogle Scholar
  99. M. Keidar, I. Beilis, R.L. Boxman, S. Goldsmith, J. Phys. D Appl. Phys. (1996).  https://doi.org/10.1088/0022-3727/29/7/034 CrossRefGoogle Scholar
  100. M. Keidar, I.I. Beilis, R. Aharonov, D. Arbilly, R.L. Boxman, S. Goldsmith, J. Phys. D Appl. Phys. 30, 2972–2978 (1997).  https://doi.org/10.1088/0022-3727/30/21/011 CrossRefADSGoogle Scholar
  101. M. Keidar, R. Aharonov, I.I. Beilis, J. Vac. Sci. Technol. A 17, 3067 (1999).  https://doi.org/10.1116/1.582007 CrossRefADSGoogle Scholar
  102. M. Keidar, J. Schein, K. Wilson, A. Gerhan, M. Au, B. Tang, L. Idzkowski, M. Krishnanand, I.I. Beilis, Plasma Sources Sci. Technol. 14, 661–669 (2005).  https://doi.org/10.1088/0963-0252/14/4/004 CrossRefGoogle Scholar
  103. M. Keidar, T. Zhuang, A. Shashurin, G. Teel, D. Chiu, J. Lukas, S. Haque, L. Brieda, Plasma Phys. Control. Fusion 57(1), 014005 (2014).  https://doi.org/10.1088/0741-3335/57/1/014005 CrossRefADSGoogle Scholar
  104. V.M. Khoroshikh, S.A. Leonov, V.A. Belous, Surf. Coat. Technol. 261(25), 167–173 (2015).  https://doi.org/10.1016/j.surfcoat.2014.11.039 CrossRefGoogle Scholar
  105. J.-K. Kim, K.-R. Lee, K.Y. Eun, K.-H. Chung, Surf. Coat. Technol. 124, 135–141 (2000).  https://doi.org/10.1016/S0257-8972(99)00643-X CrossRefGoogle Scholar
  106. C. Kimblin, J. Appl. Phys. 45(12), 5235 (1974).  https://doi.org/10.1063/1.1663222 CrossRefADSGoogle Scholar
  107. A. Kitaeva, H. Tang, B. Wang, T. Andreussi, Theoretical and experimental investigation of low-power AF-MPDT performance in the high mass flow rate low discharge current regime. Vacuum 159, 324–334 (2019).  https://doi.org/10.1016/j.vacuum.2018.10.046 CrossRefADSGoogle Scholar
  108. J. Kolbeck, D. Lines, A. Knoll, in Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July 4–10 (2015)Google Scholar
  109. J. Kolbeck, G. Teel, J. Lukas, M. Keidar, in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 25-27, Salt Lake City, UT, USA (2016)Google Scholar
  110. J. Kolbeck, X. Fang, M. Keidar, J.S. Kang, M. Sanders, N. Bakulinski, in 2018 IEEE Aerospace Conference, 3–10 March, Big Sky, MT, USA (2018).  https://doi.org/10.1109/AERO.2018.8396445
  111. I.A. Krinberg, V.L. Paperny, J. Phys. D Appl. Phys. 35, 549–562 (2002).  https://doi.org/10.1088/0022-3727/35/6/310 CrossRefADSGoogle Scholar
  112. I. Kronhaus, M. Laterza, A.R. Linossier, IEEE Trans. Plasma Sci. 46(2), 283–288 (2018).  https://doi.org/10.1109/TPS.2017.2776839 CrossRefADSGoogle Scholar
  113. L. Brieda, T. Zhuang, M. Keidar, in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 14–17, San Jose, CA (2013)Google Scholar
  114. C.H. Lan, J.D. Long, L. Zheng, Y.F. Peng, J. Li, Z. Yang, P. Dong, Chin. Phys. Lett. 31(10), 105202 (2014).  https://doi.org/10.1088/0256-307X/31/10/105202 CrossRefADSGoogle Scholar
  115. C.H. Lan, J.D. Long, L. Zheng, P. Dong, Z. Yang, J. Li, T. Wang, J.L. He, Rev. Sci. Instrum. 87, 086105 (2016).  https://doi.org/10.1063/1.4959980 CrossRefADSGoogle Scholar
  116. I. Levchenko, K. Ostrikov, S. Xu, Thermodynamical and plasma-driven kinetic growth of high-aspect-ratio nanostructures: effect of hydrogen termination. J. Phys. D Appl. Phys. 42, 125207 (2009).  https://doi.org/10.1088/0022-3727/42/12/125207 CrossRefADSGoogle Scholar
  117. I. Levchenko, K. Ostrikov, Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays. Appl. Phys. Lett. 92(6), 063108 (2008).  https://doi.org/10.1063/1.2841845 CrossRefADSGoogle Scholar
  118. I. Levchenko, M. Keidar, J. Cantrell, Y.-L. Wu, H. Kuninaka, K. Bazaka, S. Xu, Explore space using swarms of tiny satellites. Nature 562, 185 (2018a).  https://doi.org/10.1038/d41586-018-06957-2 CrossRefADSGoogle Scholar
  119. I. Levchenko, S. Xu, S. Mazouffre, M. Keidar, K. Bazaka, Mars colonization: beyond getting there. Glob. Chall. 2, 1800062 (2018b).  https://doi.org/10.1002/gch2.201800062 CrossRefGoogle Scholar
  120. I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses, S. Mazouffre, T. Henning, P.J. Klar, S. Shinohara, J. Schein, L. Garrigues, M. Kim, D. Lev, F. Taccogna, R.W. Boswell, C. Charles, H. Koizumi, Y. Shen, C. Scharlemann, M. Keidar, S. Xu, Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5, 011104 (2018c).  https://doi.org/10.1063/1.5007734 CrossRefADSGoogle Scholar
  121. I. Levchenko, K. Bazaka, S. Mazouffre, S. Xu, Prospects and physical mechanisms for photonic space propulsion. Nat. Photon. 12, 649–657 (2018d).  https://doi.org/10.1038/s41566-018-0280-7 CrossRefADSGoogle Scholar
  122. I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, S. Xu, Advanced materials for next generation spacecraft. Adv. Mater. 30, 1802201 (2018e).  https://doi.org/10.1002/adma.201802201 CrossRefGoogle Scholar
  123. I. Levchenko, S. Xu, G. Teel, D. Mariotti, M.L.R. Walker, M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9, 879 (2018f).  https://doi.org/10.1038/s41467-017-02269-7 CrossRefADSGoogle Scholar
  124. I. Levchenko, K. Bazaka, M. Keidar, S. Xu, J. Fang, Hierarchical multi-component inorganic metamaterials: intrinsically driven self-assembly at nanoscale. Adv. Mater. 30, 1702226 (2018g).  https://doi.org/10.1002/adma.201702226 CrossRefGoogle Scholar
  125. I. Levchenko, K. Bazaka, O. Baranov, M. Sankaran, A. Nomine, T. Belmonte, S. Xu, Lightning under water: diverse reactive environments and evidence of synergistic effects for material treatment and activation. Appl. Phys. Rev. 5, 021103 (2018h).  https://doi.org/10.1063/1.5024865 CrossRefADSGoogle Scholar
  126. L. Li, Y. Zhu, F. He, D. Dun, F. Li, P.K. Chu, J. Li, Vacuum 91, 20–23 (2013).  https://doi.org/10.1016/j.vacuum.2012.10.008 CrossRefADSGoogle Scholar
  127. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges for Materials Processing (Wiley, New York, 2005)CrossRefGoogle Scholar
  128. J.W.M. Lim, S. Huang, Y.-F. Sun, L. Xu, R.Z.W. Sim, J.S. Yee, Z. Zhang, I. Levchenko, S. Xu, IEEE Trans. Plasma Sci. 46, 338–343 (2018a).  https://doi.org/10.1109/TPS.2017.2783954 CrossRefADSGoogle Scholar
  129. J.W.M. Lim, S.Y. Huang, L. Xu, J.S. Yee, R.Z. Sim, Z.L. Zhang, I. Levchenko, S. Xu, IEEE Trans. Plasma Sci. 46, 345–353 (2018b).  https://doi.org/10.1109/TPS.2018.2795023 CrossRefADSGoogle Scholar
  130. Y.I. Londer, K.N. Ulyanov, IEEE Trans. Plasma Sci. 35(4), 897–904 (2007).  https://doi.org/10.1109/TPS.2007.902121 CrossRefADSGoogle Scholar
  131. Y.I. Londer, K.N. Ulyanov, IEEE Trans. Plasma Sci. 41(8), 1996 (2013).  https://doi.org/10.1109/TPS.2013.2250310 CrossRefADSGoogle Scholar
  132. J. Lukas, G. Teel, J. Kolbeck, M. Keidar, AIP Adv. 6, 025311 (2016).  https://doi.org/10.1063/1.4942111 CrossRefADSGoogle Scholar
  133. J. Lun, C. Law, IEEE Trans. Plasma Sci. 43(1), 198–208 (2015).  https://doi.org/10.1109/TPS.2014.2361439 CrossRefADSGoogle Scholar
  134. M. Keidar, S. Haque, T. Zhuang, A. Shashurin, D. Chiu, G. Teel, E. Agasid, O. Tintore, E. Uribe, in 27th Annual AIAA/USU Conference on Small Satellites, Paper # SSC13-VII-9 (2013), pp. 1–9Google Scholar
  135. M. Kuehn, M. Kuehn-Kauffeldt, L. Seipp, J. Schein, in 35th International Electric Propulsion Conference, Georgia Institute of Technology, USA October 8–12 (2017)Google Scholar
  136. H.S. Marks, I.I. Beilis, R.L. Boxman, IEEE Trans. Plasma Sci. 37(7), 1332 (2009).  https://doi.org/10.1109/TPS.2009.2022011 CrossRefADSGoogle Scholar
  137. MPCS-IV, May 2019, Beijing Institute of Control Engineering, Beijing, China. https://www.micropropulsion.org. Accessed 07 Jan 2019
  138. S. Mazouffre, Plasma Sources Sci. Technol. 25(3), 033002 (2016).  https://doi.org/10.1088/0963-0252/25/3/033002 CrossRefADSGoogle Scholar
  139. S. Mazouffre, L. Grimaud, IEEE Trans. Plasma Sci. 46(2), 330–337 (2018).  https://doi.org/10.1109/TPS.2017.2786402 CrossRefADSGoogle Scholar
  140. G.A. Mesyats, IEEE Trans. Plasma Sci. 23(6), 879 (1995).  https://doi.org/10.1109/27.476469 CrossRefADSGoogle Scholar
  141. R. Methling, S.A. Popov, A.V. Batrakov, D. Uhrlandt, K.-D. Weltmann, IEEE Trans. Plasma Sci. 41(8), 1904 (2013).  https://doi.org/10.1109/TPS.2015.2443856 CrossRefADSGoogle Scholar
  142. NASA’s Mars Exploration Program. https://mars.nasa.gov. Accessed 07 Jan 2019
  143. NASA’s Moon Exploration Program. https://moon.nasa.gov. Accessed 07 Jan 2019
  144. New Horizons News. http://pluto.jhuapl.edu. Accessed 07 Jan 2019
  145. V. Nemchinsky, IEEE Trans. Plasma Sci. 47, 701–705 (2019).  https://doi.org/10.1109/TPS.2018.2863222 CrossRefADSGoogle Scholar
  146. P.R.C. Neumann, M.M.M. Bilek, R.N. Tarrant, D.R. McKenzie, Plasma Sources Sci. Technol. (2009).  https://doi.org/10.1088/0963-0252/18/4/045005 CrossRefGoogle Scholar
  147. P. Neumann, M. Bilek, D. McKenzie, AIAA J. Propuls. Power 28, 218 (2012).  https://doi.org/10.2514/1.B34336 CrossRefGoogle Scholar
  148. P.R.C. Neumann, M. Bilek, D.R. McKenzie, Appl. Phys. Lett. 109, 094101 (2016).  https://doi.org/10.1063/1.4962124 CrossRefADSGoogle Scholar
  149. A.G. Nikolaev, G.Y. Yushkov, K.P. Savkin, E.M. Oks, Rev. Sci. Instrum. 83, 02A503 (2012).  https://doi.org/10.1063/1.4824641 CrossRefGoogle Scholar
  150. A.G. Nikolaev, G.Yu. Yushkov, K.P. Savkin, E.M. Oks, IEEE Trans. Plasma Sci. 41(8), 1983 (2013).  https://doi.org/10.1109/TPS.2012.2236363 CrossRefADSGoogle Scholar
  151. A.G. Nikolaev, K.P. Savkin, G.Y. Yushkov, E.M. Oks, Rev. Sci. Instrum. 85, 2B501 (2014a).  https://doi.org/10.1063/1.4824641 CrossRefGoogle Scholar
  152. A.G. Nikolaev, E.M. Oks, K.P. Savkin, G.Yu. Yushkov, V.P. Frolova, S.A. Barengolts, J. Appl. Phys. 116, 213303 (2014b).  https://doi.org/10.1063/1.4903730 CrossRefADSGoogle Scholar
  153. E.M. Oks, A. Anders, I.G. Brown, M.R. Dickinson, R.A. MacGill, IEEE Trans. Plasma Sci. 24, 1174 (1996).  https://doi.org/10.1109/27.533127 CrossRefADSGoogle Scholar
  154. E.M. Oks, K.P. Savkin, G.Yu. Yushkov, A.G. Nikolaev, A. Anders, I.G. Brown, Rev. Sci. Instrum. 77, 03B504 (2006). http://dx.doi.org/10.1063/1.2164967
  155. A.V. Phelps, J. Phys. Chem. Ref. Data 20, 557 (1991).  https://doi.org/10.1063/1.555889 CrossRefADSGoogle Scholar
  156. J.E. Polk, M.J. Sekerak, J.K. Ziemer, J. Schein, N. Qi, A. Anders, IEEE Trans. Plasma Sci. 36(5), 2167 (2008).  https://doi.org/10.1109/TPS.2008.2004374 CrossRefADSGoogle Scholar
  157. E.M. Purcell, Electricity and Magnetism (McGraw-Hill, New York, 1985)Google Scholar
  158. A.E. Robson, J. Phys. D Appl. Phys. (1978).  https://doi.org/10.1088/0022-3727/11/13/014 CrossRefGoogle Scholar
  159. J. Rosén, A. Anders, S. Mráz, J.M. Schneider, J. Appl. Phys. 97, 103306 (2005).  https://doi.org/10.1063/1.1906291 CrossRefADSGoogle Scholar
  160. L. Ryves, D.R. McKenzie, M.M.M. Bilek, IEEE Trans. Plasma Sci. (2009).  https://doi.org/10.1109/TPS.2008.2007734 CrossRefGoogle Scholar
  161. J. Schein, N. Qi, R. Binder, M. Krishnan, J.K. Ziemer, J.E. Polk, A. Anders, Rev. Sci. Instrum. 73(2), 925–927 (2002).  https://doi.org/10.1063/1.1428784 CrossRefADSGoogle Scholar
  162. T. Schulke, A. Anders, IEEE Trans. Plasma Sci. 27, 911–914 (1999).  https://doi.org/10.1109/27.782259 CrossRefADSGoogle Scholar
  163. A. Shashurin, I.I. Beilis, R.L. Boxman, Plasma Sources Sci. Technol. 18, 045004 (2009).  https://doi.org/10.1088/0963-0252/18/4/045004 CrossRefADSGoogle Scholar
  164. J.C. Sherman, R. Webster, J.E. Jenkins, R. Holmes, J. Phys. D Appl. Phys. 8, 696–702 (1975).  https://doi.org/10.1088/0022-3727/8/6/014 CrossRefADSGoogle Scholar
  165. Z. Shi, S. Jia, X. Song, Z. Liu, H. Dong, L. Wang, IEEE Trans. Plasma Sci. 37(8), 1446–1451 (2009).  https://doi.org/10.1109/TPS.2009.2019097 CrossRefADSGoogle Scholar
  166. T.E.R. Smith, T. Zhuang, M. Keidar, in 33rd International Electric Propulsion Conference, Washington, D.C. USA, October 6–10 (2013)Google Scholar
  167. X. Song, Z. Shi, C. Liu, S. Jia, L. Wang, IEEE Trans. Plasma Sci. 41(8), 2061–2067 (2013).  https://doi.org/10.1109/TPS.2013.2248759 CrossRefADSGoogle Scholar
  168. X. Song, Q. Wang, Z. Lin, P. Zhang, S. Wang, Plasma Sci. Technol. 20, 025402 (2018).  https://doi.org/10.1088/2058-6272/aa8a30 CrossRefADSGoogle Scholar
  169. A. Sudha, S.L. Sharma, T.K. Maity, Mater. Lett. 157, 19–22 (2015).  https://doi.org/10.1016/j.matlet.2015.05.050 CrossRefGoogle Scholar
  170. P. Sun, C. Xue, Adv. Mater. Res. 614–615, 1138–1141 (2013).  https://doi.org/10.4028/www.scientific.net/AMR.614-615.1138 CrossRefGoogle Scholar
  171. H. Takikawa, H. Tanoue, IEEE Trans. Plasma Sci. 35(4), 992–999 (2007).  https://doi.org/10.1109/TPS.2007.897907 CrossRefADSGoogle Scholar
  172. G. Teel, A. Shashurin, X. Fang, M. Keidar, J. Appl. Phys. 121, 023303 (2017).  https://doi.org/10.1063/1.4974004 CrossRefADSGoogle Scholar
  173. H. Timko, K.N. Sjobak, L. Mether, S. Calatroni, F. Djurabekova, K. Matyash, K. Nordlund, R. Schneider, W. Wuensch, Contrib. Plasma Phys. 55(4), 299–314 (2015).  https://doi.org/10.1002/ctpp.201400069 CrossRefADSGoogle Scholar
  174. Z.L. Tsakadze, I. Levchenko, K. Ostrikov, S. Xu, Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45(10), 2022–2030 (2007).  https://doi.org/10.1016/j.carbon.2007.05.030 CrossRefGoogle Scholar
  175. J. Vetter, Surf. Coat. Technol. 257(25), 213–240 (2014).  https://doi.org/10.1016/j.surfcoat.2014.08.017 CrossRefGoogle Scholar
  176. A.V. Vodopyanov, S.V. Golubev, V.G. Zorin, S.V. Razin, A.V. Vizir, A.G. Nikolaev, E.M. Oks, G.Y. Yushkov, Rev. Sci. Instrum. (2004).  https://doi.org/10.1063/1.1702139 CrossRefGoogle Scholar
  177. A.V. Vodopyanov, S.V. Golubev, D.A. Mansfeld, A.G. Nikolaev, E.M. Oks, S.V. Razin, K.P. Savkin, G.Yu. Yushkov, Tech. Phys. (2005). http://dx.doi.org/10.1134/1.2051464
  178. A.V. Vodopyanov, S.V. Golubev, D.A. Mansfeld, A.G. Nikolaev, E.M. Oks, V.I. Khizhnyak, G.Yu. Yushkov, Tech. Phys. Lett. 33, 872–874 (2007). http://dx.doi.org/10.1134/S1063785007100197 CrossRefADSGoogle Scholar
  179. L. Wang, S. Jia, Z. Shi, M. Rong, J. Phys. D Appl. Phys. 38, 1034–1041 (2005).  https://doi.org/10.1088/0022-3727/38/7/011 CrossRefADSGoogle Scholar
  180. B.B. Wang, K. Zheng, D. Gao, I. Levchenko, K. Ostrikov, M. Keidar, S.S. Zou, Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake—BNCO nanowall systems. J. Mater. Chem. C 4, 9788–9797 (2016).  https://doi.org/10.1039/C6TC03871A CrossRefGoogle Scholar
  181. B. Wang, W. Yang, H. Tang et al., Target thrust measurement for applied-field magnetoplasmadynamic thruster. Meas. Sci. Technol. 29, 075302 (2018a).  https://doi.org/10.1088/1361-6501/aac079 CrossRefADSGoogle Scholar
  182. L. Wang, X. Zhang, Y. Wang, Z. Yang, S. Jia, Phys. Plasmas 25, 043511 (2018b).  https://doi.org/10.1063/1.5023213 CrossRefADSGoogle Scholar
  183. R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos, B. Li, J. Phys. D Appl. Phys. 42, 194001 (2009).  https://doi.org/10.1088/0022-3727/42/19/194001 CrossRefADSGoogle Scholar
  184. M. Wolter, I. Levchenko, H. Kersten, S. Kumar, K. Ostrikov, Disentangling fluxes of energy and matter in plasma-surface interactions: effect of process parameters. J. Appl. Phys. 108, 053302 (2010).  https://doi.org/10.1063/1.3475728 CrossRefADSGoogle Scholar
  185. M.M.A. Yajadda, I. Levchenko, K. Ostrikov, Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. J. Appl. Phys. 110, 023303 (2011).  https://doi.org/10.1063/1.3610497 CrossRefADSGoogle Scholar
  186. G. Yushkov, A. Anders, Appl. Phys. Lett. 92, 041502 (2008).  https://doi.org/10.1063/1.2839616 CrossRefADSGoogle Scholar
  187. O. Zarchin, V.N. Zhitomirsky, S. Goldsmith, R.L. Boxman, J. Phys. D Appl. Phys. 36, 2262–2268 (2003).  https://doi.org/10.1088/0022-3727/36/18/015 CrossRefADSGoogle Scholar
  188. H.-S. Zhang, K. Komvopoulos, Rev. Sci. Instrum. 79, 073905 (2008).  https://doi.org/10.1063/1.2949128 CrossRefADSGoogle Scholar
  189. L. Zhang, S. Jia, L. Wang, Z. Shi, Plasma Sci. Technol. 13(4), 462–469 (2011).  https://doi.org/10.1088/1009-0630/13/4/15 CrossRefADSGoogle Scholar
  190. X. Zhang, L. Wang, S. Jia, D.L. Shmelev, J. Phys. D Appl. Phys. 50, 455203 (2017).  https://doi.org/10.1088/1361-6463/aa8db3 CrossRefADSGoogle Scholar
  191. I. Zhirkov, A.O. Eriksson, J. Rosen, J. Appl. Phys. 114, 213302 (2013).  https://doi.org/10.1063/1.4841135 CrossRefADSGoogle Scholar
  192. V.N. Zhitomirsky, R.L. Boxman, S. Goldsmith, IEEE Trans. Plasma Sci. 25(4), 665–669 (1997).  https://doi.org/10.1109/27.640682 CrossRefADSGoogle Scholar
  193. H. Zhou, Q. Hou, T. Xiao, Y. Wang, B. Liao, X. Zhang, Diam. Relat. Mater. 75, 96–104 (2017).  https://doi.org/10.1016/j.diamond.2017.02.012 CrossRefADSGoogle Scholar
  194. T. Zhuang, A. Shashurin, M. Keidar, I.I. Beilis, Plasma Sources Sci. Technol. 20, 015009 (2011).  https://doi.org/10.1088/0963-0252/20/1/015009 CrossRefADSGoogle Scholar
  195. S. Zöhrer, A. Anders, R. Franz, Plasma Sources Sci. Technol. 27, 055007 (2018).  https://doi.org/10.1088/1361-6595/aabdc7 CrossRefADSGoogle Scholar
  196. D.B. Zolotukhin, M. Keidar, Plasma Sources Sci. Technol. 27, 074001 (2018).  https://doi.org/10.1088/1361-6595/aacdb0 CrossRefADSGoogle Scholar

Copyright information

© Division of Plasma Physics, Association of Asia Pacific Physical Societies 2019

Authors and Affiliations

  1. 1.National Aerospace UniversityKharkovUkraine
  2. 2.Plasma Sources and Application Centre/Space Propulsion Centre Singapore, NIENanyang Technological UniversitySingaporeSingapore
  3. 3.School of Chemistry, Physics, and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  4. 4.Harbin Institute of TechnologyHarbinChina
  5. 5.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina
  6. 6.Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations