Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calibration of liquid argon detector with 83mKr and 22Na in different drift fields

  • 2 Accesses

Abstract

Introduction

Liquid noble gases are widely used as targets in low background search experiments, particularly in direct dark matter search experiments. 83mKr is an excellent low-energy internal calibration source for future larger liquid noble gas detectors.

Purpose

To calibrate liquid argon detector with 83mKr in different drift fields and to study the correlation between light yield and drift fields.

Method

A dual-phase LAr prototype detector was designed to study the 83mKr responses in liquid argon. 83mKr atoms are produced through the decay of 83Rb and introduced into the LAr detector through the circulating purification system.

Conclusion

We report that the light yield reaches 7.26 ± 0.02 pe/keV for 41.5 keV from 83mKr and 7.66 ± 0.01 pe/keV for 511 keV from 22Na, as a comparison. After stopping the fill, the rate decays of 83mKr are with a fitted half-life of 1.83 ± 0.11 h, which is consistent with the reported value of 1.83 ± 0.02 h. The light yield that varies with the drift electric field from 0 to 200 V/cm has also been reported.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

  2. 2.

    E. Aprile et al., Dark matter results from 225 Live Days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)

  3. 3.

    A. Tan et al., Dark matter results from first 98.7 days of data from the panda X-II experiment. Phys. Rev. Lett. 117, 121303 (2016)

  4. 4.

    P. Agnes et al., Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93, 081101 (2016)

  5. 5.

    A. Zani, The WArP experiment: a double-phase argon detector for dark matter searches. Adv. High Energy Phys. 2014, 205107 (2014)

  6. 6.

    M. Kuzniak et al., DEAP-3600 dark matter search. Nucl. Part. Phys. Proc. 273C275, 340 (2016)

  7. 7.

    R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ion-ization threshold experiment. Phys. Rev. Lett. 116, 071301 (2016)

  8. 8.

    J. Lewin, P. Smith, Review of mathematics, numerical fac-tors, and corrections for dark matter experiments based on elas-tic nuclear recoil. Astropart. Phys. 6, 87 (1996)

  9. 9.

    E. Aprile et al., The XENON Collabora- tion. arXiv:1805.12562v1 (2018)

  10. 10.

    D.S. Akerib et al., The LUX collaboration. Phys. Rev. Lett. 118, 021303 (2017)

  11. 11.

    X. Cui et al., The panda X-II collaboration. Phys. Rev. Lett. 119, 181302 (2017)

  12. 12.

    C.E. Aalseth et al., The darkside collaboration. Eur. Phys. J. Plus 133, 131 (2018)

  13. 13.

    C.E. Aalseth, F. Acerbi, P. Agnes, et al., arX-iv:1707.08145v2 (2018)

  14. 14.

    H. Zhang, et al., arXiv:1806.02229 (2018)

  15. 15.

    J. Aalbers, L. Baudis, et al., arXiv:1606.07001v1

  16. 16.

    W.H. Lippincott et al., Calibration of liquid argon and neon de-tectors with 83mKr. Phys. Rev. C. 81, 045803 (2010)

  17. 17.

    D. Venos et al., 83mKr radioactive source based on 83Rb trapped in cation-exchange paper or in zeolite. Appl. Radiat. Isot. 63, 323 (2005)

  18. 18.

    D. Venos et al., Precise energy of the weak 32 keV gamma transition observed in 83mKr decay. Nucl. Instrum. Meth. A 560, 352 (2006)

  19. 19.

    S.C. Wu, Nuclear data sheets for A = 83. Nucl. Data Sheets 92, 893 (2001)

  20. 20.

    R. Agnese et al., First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Phys. Rev. B. 743, 456–466 (2015)

  21. 21.

    E. Aprile, et al., First observation of two-neutrino dou-ble electron capture in 124Xe with XENON1T. arX-iv:1904.11002v1 (2019)

  22. 22.

    M. Zbořil, et al., Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment. arXiv:1212.5016v2

  23. 23.

    L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey, Calibration of a liquid xenon detector with 83 Krm. Phys. Rev. C 80, 045809 (2009)

  24. 24.

    M. Vikuiti, solutions.3m.com, (2012)

  25. 25.

    W.M. Burton, B.A. Powell, Appl. Opt. 12, 87C89 (1973)

  26. 26.

    P.-X. Li, M.-Y. Guan, et al., Preliminary test results of LAr prototype detector. arXiv:1601.01075v1

  27. 27.

    E.H. Bellamy et al., Absolute calibration and monitoring of a spectrometric channel using a photomultiplier. Nucl. Inst. Methods A 339, 468 (1994)

  28. 28.

    ESTAR: stopping power and range tables for electrons, the compositional data for ARGON. National Institute of Standards and Technology. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

  29. 29.

    S. Kubota, M. Hishida, M. Suzuki, J. Ruan (Gen), Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon. Phys. Rev. B 20, 3486 (1979)

  30. 30.

    P. Agnes et al., DarkSide. J. Instrum. 12, P10015 (2017)

  31. 31.

    P. Agnes et al., Measurement of the liquid argon energy re-sponse to nuclear and electronic recoils. Phys. Rev. D 97, 112005 (2018)

Download references

Acknowledgements

We acknowledge financial support from supported by Ministry of Science and Technology of the People’s Republic of China (2016YFA0400304). We would like to thank Institute of Modern Physics of the Chinese Academy of Sciences and Shanghai jiao tong university for the support of the production of the 83Rb source. We also thank Y. Wang, a postdoctoral fellow at UCLA helped me in the early days of the detector design.

Author information

Correspondence to Wei-Xing Xiong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Guan, M., Yang, C. et al. Calibration of liquid argon detector with 83mKr and 22Na in different drift fields. Radiat Detect Technol Methods (2020). https://doi.org/10.1007/s41605-020-00162-4

Download citation

Keywords

  • Time projection chamber
  • Noble liquid detectors
  • Light yield
  • Liquid argon

PACS

  • 85.60.Ha
  • 14.60.Pq