Advertisement

A high time resolution and low-power ASIC for MRPC applications

  • Jia-yi Ren
  • Wei WeiEmail author
  • Ru-yi Jin
  • Jie Zhang
  • Gang Liu
  • Xiao-shan Jiang
  • Zheng Wang
Original Paper

Abstract

Purpose

The structure of readout circuits needs to be improved to meet the requirements of the endcap time of flight upgrade with multi-gap resistive plate chamber (MRPC) in Beijing Spectrometer III experiments, posing a demand for the high time resolution and low-power electronics.

Methods

Considering MRPC features, an application-specific integrated circuit (ASIC) called FEEWAVE, which integrates the front-end circuit and digitization function, is proposed to meet the above requirements. The front-end circuit implements I/V conversion and signal amplification. To reduce power consumption and further improve the time resolution, the waveform sampling technique based on switch capacitor array is adopted.

Results and conclusion

A 30 fC to 1.2 pC input signal dynamic range is obtained, and the jitter is less than 21 ps rms. At the same time, the chip realizes 5 GSPS (gigabit samples per second) sampling rate, trigger rate capability of 50 kHz and 25 mW/channel power consumption. The 6-channel ASIC has been designed and taped out with 0.18 \(\upmu \)m complementary metal oxide semiconductor technology. The preliminary test results of FEEWAVE have been achieved.

Keywords

MRPC Waveform sampling ASIC 

Notes

Acknowledgements

The waveform sampling part mentioned in this work was improved from its first version, which was implemented in the JUNO collaboration by IHEP, Tsinghua University and University of Science and Technology of China. We acknowledge Prof. Fukun Tang in the University of Chicago for his strong guidance and advice on the previous SCA chip. This work was supported by a Grant from the National Natural Science Foundation of China (No. 11505205).

References

  1. 1.
    X. Wang, Y. Heng, Z. Wu, C. Li, Y. Sun, H. Dai, S. Sun, R. Yang, Z. Liu, P. Cao et al., The cosmic ray test of MRPCs for the BESIII ETOF upgrade. Eur. Phys. J. C 76(4), 211 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    S. Qian, Z. Ning, F.U. Zai-Wei, X.H. Chen, Y.J. Sun, S. Yang, R. Jia, The control and monitor system for the BESIII ETOF/MRPC beam test. Nucl. Sci. Techn. 26(1), 10201 (2015)Google Scholar
  3. 3.
    X. Wang, H. Dai, Z. Wu, Y. Heng, J. Zhang, P. Cao, X. Ji, C. Li, W. Sun, S. Wang, BESIII ETOF upgrade readout electronics commissioning. Chin. Phys. C 41(1), 156 (2017)Google Scholar
  4. 4.
    M.C.S. Williams, The multigap RPC: the time-of-flight detector for the ALICE experiment. Nucl. Phys. 478(1), 183 (2002)Google Scholar
  5. 5.
    F. Geurts, M. Shao, B. Bonner, H. Chen, X. Dong, G. Eppley, S. Huang, C. Li, J. Li, W. Llope, Performance of the prototype MRPC detector for STAR. Nucl. Instrum. Methods Phys. Res. A 533(1–2), 60 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    B. Bonner, H. Chen, G. Eppley, F. Geurts, J. Lamas-Valverde, A single time-of-flight tray based on multigap resistive plate chambers for the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 508(1), 181 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    F. Anghinolfi, P. Jarron, F. Krummenacher, E. Usenko, M.C.S. Williams, NINO, an ultra-fast, low-power, front-end amplifier discriminator for the Time-Of-Flight detector in ALICE experiment. IEEE Trans. Nucl. Sci. 51(5), 1974 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Ciobanu, N. Herrmann, K.D. Hildenbrand, M. Kis, A. Schuttauf, H. Flemming, H. Deppe, S. Lochner, J. Fruhauf, I. Deppner, Padi, an ultrafast preamplifier-discriminator ASIC for time-of-flight measurements. IEEE Trans. Nucl. Sci. 61(2), 1015 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    X. Zhou, Z. Deng, Y. Wang, Y.N. Liu, Development of a current-mode ASIC for MRPC detectors. J. Instrum. 9(10), C10040 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Nambiar, C. Ulaganathan, S. Chen, M. Hale, A. Antonacci, B.J. Blalock, C.L. Britton, M.N. Ericson, SiGe BiCMOS 12-bit 8-channel low power Wilkinson ADC, In: Symposium on Circuits & Systems (2008)Google Scholar
  11. 11.
    S. Liu, C. Feng, A. Qi, Y. Heng, S. Sun, BES III Time-of-Flight readout system. IEEE Trans. Nucl. Sci. 57(2), 419 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    P. Antonioli, The ALICE time of flight system. Nucl. Phys. B, Proc. Suppl. 125(3), 193 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    F. Anghinolfi, P. Jarron, A.N. Martemiyanov, E. Usenko, H. Wenninger, M.C.S. Williams, A. Zichichi, NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nucl. Instrum. Methods Phys. Res. A 533(1–2), 183 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Genat, G. Varner, F. Tang, H. Frisch, Signal processing for picosecond resolution timing measurements. Nucl. Instrum. Methods Phys. Res. A 607(2), 387 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    E. Oberla, J.F. Genat, H. Grabas, H. Frisch, K. Nishimura, G. Varner, A 15 GSa/s, 1.5 GHz bandwidth waveform digitizing ASIC. Nucl. Instrum. Methods Phys. Res. A 735(1), 452 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    S. Ritt, R. Dinapoli, U. Hartmann, Application of the DRS chip for fast waveform digitizing. Nucl. Instrum. Methods Phys. Res. A 623(1), 486 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    G.S. Varner, L.L. Ruckman, J.W. Nam, R.J. Nichol, J. Cao, P.W. Gorham, M. Wilcox, The large analog bandwidth recorder and digitizer with ordered readout (LABRADOR) ASIC. Nucl. Instrum. Methods Phys. Res. A 583(2–3), 447 (2005)ADSGoogle Scholar
  18. 18.
    P. Vincent, P. Nayman, F. Toussenel, Y. Degerli, E. Delagnes, P. Goret, SAM: A new GHz sampling ASIC for the H.E.S.S.-II front-end electronics. Nucl. Instrum. Methods Phys. Res. A 567(1), 21 (2005)Google Scholar
  19. 19.
    P. Mroszczyk, P. Dudek, Tunable CMOS delay gate with reduced impact of fabrication mismatch on timing parameters, In: New Circuits & Systems Conference (2013)Google Scholar
  20. 20.
    S. Kleinfelder, Gigahertz waveform sampling and digitization circuit design and implementation. IEEE Trans. Nucl. Sci. 50(4), 955 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    D. Strickershaver, S. Ritt, B.J. Pichler, Novel calibration method for switched capacitor arrays enables time measurements with sub-picosecond resolution. IEEE Trans. Nucl. Sci. 61(6), 3607 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Uchida, Hardware-based TCP processor for gigabit ethernet. IEEE Trans. Nucl. Sci. 55(3), 1631 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Jia-yi Ren
    • 1
    • 2
  • Wei Wei
    • 1
    • 2
    Email author
  • Ru-yi Jin
    • 1
    • 2
  • Jie Zhang
    • 1
    • 2
  • Gang Liu
    • 1
  • Xiao-shan Jiang
    • 1
    • 2
  • Zheng Wang
    • 1
    • 2
  1. 1.State Key Laboratory of Particle Detection and Electronics, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
  2. 2.University of Chinese Academy of Sciences (UCAS)BeijingChina

Personalised recommendations