Advertisement

Technical commissioning of the spot scanning system in Shanghai Proton Therapy Facility

  • Ming Liu
  • Haiyang ZhangEmail author
  • Hang Shu
  • Chongxian Yin
  • Liying Zhao
  • Lianhua Ouyang
  • Rui Li
  • Songqing Tan
  • Zhishan Wang
  • Hanwen Du
  • Haiqun Zhang
  • Manzhou Zhang
  • Kecheng Chu
  • Xiaolei Dai
Original Paper
  • 11 Downloads

Abstract

Background

In the field of particle therapy, the method of pencil beam scanning is of great potential for clinical application, now and in the future.

Purpose

The authors made strong effort to develop a spot scanning system for Shanghai Proton Therapy Facility. Design parameters and basic layout of the system are introduced.

Methods

Functionalities and specifications of crucial devices are described in detail. Most of the devices in the system were designed in house by the authors themselves, including scanning nozzle, scanning magnets and their power supplies, beam monitors, irradiation control modules and safety interlock modules. During the technical commissioning stage in the fix beam room, the spot scanning system was tested and verified.

Results

Under conditions of the maximum dose rate and minimum dose rate, a) repeatability of the single spot dose is less than ± 0.1%; b) nonlinearity of the single spot dose is less than ± 0.1%; c) FWHM for spot size in air at isocenter varies from 8mm to 12mm for full energy, consistent with the design values; d) lateral dose distribution achieves a flatness of less than 2% for multiple proton energies.

Conclusion

According to the results of technical commissioning, the spot scanning system is capable of producing a prescribed 3D dose distribution for target tumor successfully.

Keywords

Particle therapy Pencil beam scanning Commissioning 

Notes

Acknowledgements

This work was supported by the Youth Innovation Promotion Association CAS (No. 2016238).

References

  1. 1.
    R.R. Wilson, Radiological use of fast protons. Radiology 47, 487–491 (1946).  https://doi.org/10.1148/47.5.487 CrossRefGoogle Scholar
  2. 2.
  3. 3.
    M.Z. Zhang, D.M. Li, K. Wang, X.C. Xie, Q.L. Zhang, Z.T. Zhao, Commissioning of Shanghai advanced proton therapy, in Proceedings of IPAC’2018. TUPAL059, (2018), pp. 1151–1154.  https://doi.org/10.18429/JACoW-IPAC2018-TUPAL059
  4. 4.
    M. Engelsman, H.M. Lu, D. Herrup, Commissioning a passive-scattering proton therapy nozzle for accurate SOBP delivery. Med. Phys. 36, 2171–2180 (2009).  https://doi.org/10.1118/1.3121489 CrossRefGoogle Scholar
  5. 5.
    T. Furukawa, T. Inaniwa, S. Sato et al., Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med. Phys. 37, 5672–5682 (2010).  https://doi.org/10.1118/1.3501313 CrossRefGoogle Scholar
  6. 6.
    M.T. Gillin, N. Sahoo, M. Bues et al., Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med. Phys. 37, 154–163 (2010).  https://doi.org/10.1118/1.3259742 CrossRefGoogle Scholar
  7. 7.
    E. Pedroni, D. Meer, C. Bula et al., Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results. Eur. Phys. J. Plus 126, 66 (2011).  https://doi.org/10.1140/epjp/i2011-11066-0 CrossRefGoogle Scholar
  8. 8.
    S. Giordanengo, M. Donetti, F. Marchetto et al., Performances of the scanning system for the CNAO center of oncological hadron therapy. Nucl. Instrum. Methods A 613, 317–322 (2010).  https://doi.org/10.1016/j.nima.2009.11.068 ADSCrossRefGoogle Scholar
  9. 9.
    S. Giordanengo, L. Manganaro, A. Vignati, Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Physica Med 43, 79–99 (2017).  https://doi.org/10.1016/j.ejmp.2017.10.013 CrossRefGoogle Scholar
  10. 10.
    S. Han, G. Cho, S.B. Lee, An assessment of the secondary neutron dose in the passive scattering proton beam facility of the National Cancer Center. Nucl. Eng. Technol. 49, 801–809 (2017).  https://doi.org/10.1016/j.net.2016.12.003 CrossRefGoogle Scholar
  11. 11.
    C.H. Miao, M. Liu, H. Shu et al., Design of a proton spot scanning position control system. Nucl. Tech. 41, 040201 (2018).  https://doi.org/10.11889/j.0253-3219.2018.hjs.41.040201. (in Chinese) CrossRefGoogle Scholar
  12. 12.
    B.Q. Zhao, M.H. Zhao, M. Liu et al., The front-end electronics design of dose monitors for beam delivery system of Shanghai Advanced Proton Therapy Facility. Nucl. Sci. Technol. 28, 83 (2017).  https://doi.org/10.1007/s41365-017-0230-y CrossRefGoogle Scholar
  13. 13.
    C.H. Miao, M. Liu, C.X. Yin et al., Precise magnetic field control of the scanning magnets for the APTRON beam delivery system. Nucl. Sci. Technol. 28, 172 (2017).  https://doi.org/10.1007/s41365-017-0324-6 CrossRefGoogle Scholar
  14. 14.
    M. Liu, C.X. Yin, K.C. Chu et al., A scheme design of collimator for gantry in proton therapy facility. Nucl. Instrum. Methods A 791, 47–53 (2015).  https://doi.org/10.1016/j.nima.2015.04.045 ADSCrossRefGoogle Scholar
  15. 15.
    T. Furukawa, Y. Hara, K. Mizushima et al., Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl. Instrum. Methods B 406, 361–367 (2017).  https://doi.org/10.1016/j.nimb.2016.10.029 ADSCrossRefGoogle Scholar
  16. 16.
    M. Ciocca, A. Mirandola, S. Molinelli et al., Commissioning of the 4-D treatment delivery system for organ motion management in synchrotron-based scanning ion beams. Physica Med (2016).  https://doi.org/10.1016/j.ejmp.2016.11.107 CrossRefGoogle Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Ming Liu
    • 1
    • 2
  • Haiyang Zhang
    • 1
    • 3
    Email author
  • Hang Shu
    • 1
    • 2
  • Chongxian Yin
    • 1
    • 2
  • Liying Zhao
    • 1
    • 2
  • Lianhua Ouyang
    • 1
    • 2
  • Rui Li
    • 1
    • 2
  • Songqing Tan
    • 1
    • 2
  • Zhishan Wang
    • 1
    • 2
  • Hanwen Du
    • 1
    • 2
  • Haiqun Zhang
    • 1
    • 2
  • Manzhou Zhang
    • 1
    • 2
  • Kecheng Chu
    • 1
    • 2
  • Xiaolei Dai
    • 1
    • 2
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
  3. 3.Shanghai APACTRON Particle Equipment Co. Ltd.ShanghaiChina

Personalised recommendations