Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo

  • Eyakifama Hazou
  • Cebastien Joel Guembou ShouopEmail author
  • Eric Jilbert Nguelem Mekongtso
  • Maurice Ndontchueng Moyo
  • Jean Felix Beyala Ateba
  • Paalamwé Komi Tchakpele
Original Paper



Because of the increasing use of phosphate in industries worldwide, especially in Togo, it is interesting to investigate the potential radioactivity exposure of phosphate ores, especially in the one being exploring in Togo nowadays.

Material and methods

The contents of natural radionuclides (40K, 226Ra, 232Th, 235U and 238U) were assessed in phosphate soil samples from Kpogamé, Dagbati and Kpémé in the maritime region of Togo by using gamma spectrometry-based Broad Energy Germanium detector (BEGe6530). Since no study was made prior to the exploitation, the samples from the control area of Anfoin-Kpota far away from the three others were considered as reference.

Results and discussion

The results are discussed and compared with the data from other countries. The activity concentration of 40K, 226Ra, 232Th, 235U and 238U are between (59.45 and 129.99), (20.19 and 779.93), (16.81 and 121.42), (2.26 and 52.03) and (16.66 and 841.14) Bq kg−1, respectively. The values obtained shows that the exploitation sites (Dagbati and Kpogamé) and treatment site (Kpémé) have a very high level of radioactivity than the control area (Anfoin-Kpota). The Kpogamé and Dagbati exploitation and Kpémé waste discharging phosphate deposit sites were found to have higher activity concentration than many others exploited phosphate sedimentary deposits around the world. The average annual effective dose of the above studied sites is 0.36, 0.24 and 0.48 mSv year−1, respectively. The value related to the discharge waste site is about 2% of the 1.0 mSv year−1 recommended by the International Commission on Radiological Protection as the maximum annual dose to the public.


The obtained result of both radioactivity and radiological level in the studied areas will be considered as a pre-operational baseline to estimate the possible radiological impacts due to mining and processing phosphate industrial activities.


Phosphate Gamma spectrometry BEGe6530 detector Soil Radiation hazard 



The authors wish to express their deep appreciation and gratitude to the IAEA for awarding the fellowship, without which this work would have been impossible; and the Director General of the National Radiation Protection Agency of Cameroon, Dr. Augustin SIMO for the laboratory support. The authors also appreciate the community of Hahotoé-Kpogamé for the understanding during sampling period. They also wish to thank Dr. Michel WARNAU, Programme Management Officer for IAEA to Togo for his understanding and availability to this work. We also wish to address special thanks to Col. MANZI Pidalatan, National Liaison Officer of Togo and project coordinator of IAEA TC Project Number: TOG/0/002 provided in granting access to the facilities to successfully complete this study.


  1. 1.
    J.F. Beyala Ateba, Ateba P. Owono, G.H. Ben-Bolie, Abiama P. Ele, C.R. Abega, S. Mvondo, Natural background dose measurements in south Cameroon. Radiat. Prot. Dosim. 140(1), 81–88 (2010)CrossRefGoogle Scholar
  2. 2.
    E.J.M. Nguelem, M.M. Ndontchueng, O. Motapon, S.C.J. Guembou, E. Darko, Radiological monitoring and statistical approach of primordial and anthropogenic radionuclides in surface soil of Mami-water site in the Western Cameroon. Environ. Earth Sci. 76, 612 (2017). CrossRefGoogle Scholar
  3. 3.
    D.R. Rangaswamy, M.C. Srilatha, C. Ningappa, E. Srinivasa, J. Sannappa, Measurement of natural radioactivity and radiation hazards assessment in rock samples of Ramanagara and Tumkur districts, Karnataka, India. Environ. Earth Sci. 75, 373 (2016). CrossRefGoogle Scholar
  4. 4.
    United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). Report to the General Assembly. Annex B: Exposures from Natural Radiation Sources (2000)Google Scholar
  5. 5.
    M.M. Ndontchueng, E.J.M. Nguelem, O., Motapon, R.L. Njinga, A. Simo, J.C.S. Guembou, B. Yimele (2015) Radiological hazards in soil from the bauxite deposits sites in Dschang Region of Cameroon. Br. J. Appl. Sci. Technol. 5(4). ISSN: 2231-0843Google Scholar
  6. 6.
    M.M. Ndontchueng, E.J.M. Nguelem, R.L. Njinga, A. Simo, J.C.S. Guembou (2014) Gamma Emitting Radionuclides in Soils from Selected Areas in DOUALA-BASSA Zone, Littoral Region of Cameroon. Hindawi Publishing Corporation, vol. 2014. ISRN Spectroscopy. Article ID 245125.
  7. 7.
    A. Baeza, J.A. Corbacho, J. Guillén, A. Salas, J.C. Mora, Analysis of the different source terms of natural radionuclides in a river affected by NORM (naturally occurring radioactive materials) activities. Chemosphere 83(7), 933–940 (2011). ADSCrossRefGoogle Scholar
  8. 8.
    IAEA TRS 419 (2003) Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation.
  9. 9.
    O. Rosskopfova, M. Galambos, P. Rajec, Determination of 63Ni in the low level solid radioactive waste. J. Radioanal. Nucl. Chem. 289, 251–256 (2011). CrossRefGoogle Scholar
  10. 10.
    G. Xhixha, M. Baldoncini, I. Callegari, T. Colonna, F. Hasani, F. Mantovani, F. Shala, V. Strati, Kaceli M. Xhixha, A century of oil and gas exploration in Albania: assessment of Naturally Occurring Radioactive Materials (NORMs). Chemosphere 139, 30–39 (2015). ADSCrossRefGoogle Scholar
  11. 11.
    E. Agbalagba, R. Onoja, Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J. Environ. Radioact. 102(7), 667–671 (2011)CrossRefGoogle Scholar
  12. 12.
    E.O. Agbalagba, G.O. Avwiri, Y.E. Chad-Umoreh, Gamma-spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J. Environ. Radioact. 109, 64–70 (2012). CrossRefGoogle Scholar
  13. 13.
    European Council for Nuclear Research (ECNR), Safety Guide for Experiments at European Council for Nuclear Research. Part III-Advice 40, Ionizing Radiation (1995)Google Scholar
  14. 14.
    M.M. Ndontchueng, R.L. Njinga, E.J.M. Nguelem, A. Simo, Analysis of 238U, 235U, 137Cs, and 133Xe in soils from two campuses in university of douala-cameroon. Appl. Radiat. Isot. 86, 85–89 (2014)CrossRefGoogle Scholar
  15. 15.
    E.J.M. Nguelem, M.M. Ndontchueng, O. Motapon, E.O. Darko, A. Simo, Determination of 226Ra. 232Th. 40K and 235U in soil samples from bauxite core deposits in western Cameroon. Radioprotection 51(3), 199–205 (2016). CrossRefGoogle Scholar
  16. 16.
    Saïdou, Mesure de la Radioactivité naturelle environnementale par Spectrométries γ et β et calcul de la dose au publique: application à la région uranifère de poli. Thèse de doctorat; Université de Douala. Faculté des sciences. Centre de Physique Moléculaire Atomique Et Optique quantique (CEPAMOQ) (2008)Google Scholar
  17. 17.
    P. Manigandan, C.B. Shekar, Evaluation of radionuclides in the terrestrial environment of Western Ghats. J. Radiat. Res. Appl. Sci. 7(3), 310–316 (2014). CrossRefGoogle Scholar
  18. 18.
    MERF, National Report on Cadmium and Lead Environment Directorate (Ministry of Environment and Forest Resources, Togo, 2005)Google Scholar
  19. 19.
    E. Bouka, P. Lawson-Evi, K. Eklu-Gadegbeku, K. Aklikokou, M. Gbeassor, Heavy metals concentration in soil, water, Manihot esculenta tuber and Oreochromis niloticus around phosphates exploitation area in Togo. Res. J. Environ. Toxicol. 7, 18–28 (2013). CrossRefGoogle Scholar
  20. 20.
    G.H. McClellan, S.J.V. Van Kauwenbergh (1990) Mineralogy of sedimentary apatite, in Phosphorite research and development, ed. by A.J.G. Notholt, I. Jarvis, Geological Society of London Special Publication, vol. 52, pp. 23–31.
  21. 21.
    C.J. Guembou Shouop, M. Ndontchueng Moyo, G. Chene, E.J. Nguelem Mekongtso, O. Motapon, D. Strivay, Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral-Region of Cameroon, using gamma spectrometry. Environ. Earth Sci. 76, 164 (2017). CrossRefGoogle Scholar
  22. 22.
    K. Dabayneh, Radioactivity measurements in different types of fabricated building materials used in Palestine. Arab. J. Nucl. Sci. Appl. 40(3), 207 (2007)Google Scholar
  23. 23.
    G.S.C. Joel, S. Penabei, M.M. Ndontchueng, G. Chene, E.J.N. Mekontso, A.N. Ebongue, M. Ousmanou, S. David, Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. MethodsX 4, 42–54 (2017). CrossRefGoogle Scholar
  24. 24.
    S.C.J. Guembou, M.N. Moyo, E.J.N. Mekongtso, O. Motapon, D. Strivay, Monte Carlo method for Gamma spectrometry based on GEANT4 toolkit: efficiency calibration of BE6530 detector”. J. Environ. Radioact. 189, 109–119 (2018). CrossRefGoogle Scholar
  25. 25.
    R. Venkataraman, F. Bronson, V. Atrashkevich, M. Field, B. M. Young (2003) Improved detector response characterization method in ISOCS and LabSOCS, in Methods and Applications of Radioanalytical Chemistry (MARC VI) Conference Google Scholar
  26. 26.
    A.M. Ababneh, M.M. Eyadeh, Coincidence summing corrections in HPGe gamma-ray spectrometry for Marinelli-beakers geometry using peak to total (P/T) calibration. J. Radiat. Res. Appl. Sci. 8(3), 323–327 (2015). CrossRefGoogle Scholar
  27. 27.
    M. Aoun, O. El Samad, Khozam R. Bou, R. Lobinski, Assessment of committed effective dose due to the ingestion of 210Po and 210Pb in consumed Lebanese fish affected by a phosphate fertilizer plant. J. Environ. Radioact. 140, 25–29 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Beretka, P.J. Mathew, Natural radioactivity of Australian building materials industrial wastes and by-products. Health Phys. 48, 87–95 (1985)CrossRefGoogle Scholar
  29. 29.
    A.G.E. Abbady, M.A. Uosif, A. El-Taher, Natural radioactivity and dose rate assessment of phosphate rocks from Wadi El-Mashash and El-Mahamid mines. Egypt. J. Environ. Radioact. 84(1), 65–78 (2005). CrossRefGoogle Scholar
  30. 30.
    A. Abbady, A.M. El-Arabi, A.G.E. Abbady, S. Taha, Gamma ray measurements of natural radioactivity in cultivated and reclaimed soil, Upper Egypt, in International Conference on Radioecology and Environmental Radioactivity, Norway, 15–20 June 2008.
  31. 31.
    R.J. Guimond (1990) Radium in fertilizers. The Environmental Behavior of Radium. Technical (Vienna: International Atomic Energy Agency) Report, vol 310, pp. 113–128Google Scholar
  32. 32.
    M. Ivanovich, R.S. Harmon, Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd edn. (Clarendon Press, Oxford, 1982)Google Scholar
  33. 33.
    A.E. Khater, R.H. Higgy, M. Pimpl, Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposit, Egypt. J. Environ. Radioact. 55, 255–267 (2001). CrossRefGoogle Scholar
  34. 34.
    M.A.M. Uosif, A. El-Taher, Radiological assessment of abu-tartur phosphate, Western Desert Egypt. Radiat. Prot. Dosimetry. 130(2), 228–235 (2008)CrossRefGoogle Scholar
  35. 35.
    K. Khan, H.M. Khan, M. Tufail, A.J.A.H. Khatibeh, N. Ahmad, Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J. Environ. Radioact. 35(1), 7–84 (1998)Google Scholar
  36. 36.
    M. Olszewska-Wasiolek, Estimates of the occupational radiological hazards in phosphate fertilizers industry in Poland. Radiat. Prot. Dosim. 58, 269–276 (1995). CrossRefGoogle Scholar
  37. 37.
    A.K. Sam, M.M.O. Ahmad, F.A. El Khngi, Y.O. El Nigumi, E. Holm, Radiological and assessment of Uro and Kurun rock phosphates. J. Environ. Radioact. 24, 65–75 (1999)CrossRefGoogle Scholar
  38. 38.
    M.M. Makweba, E. Holm, The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications. Sci. Total Environ. 133, 99–110 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Bolivar, R. García-Tenorio, M. García León, Fluxes and distribution of Natural Radionuclides in the Production and Use of Fertilizers. Appl. Radiat. Isot. 46, 717–718 (1995)CrossRefGoogle Scholar
  40. 40.
    J.P. Bolívar, R. García-Tenorio, J.L. Mas, Radioactivity of phosphogypsum in the south–west of Spain. Radiat. Prot. Dosim. 76, 185–189 (1998)CrossRefGoogle Scholar
  41. 41.
    C. Dueñas, M.C. Fernández, S. Cañete, M. Pérez, Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat. Meas. 45(2), 242–246 (2010)CrossRefGoogle Scholar
  42. 42.
    ICRP PUBLICATION 60, Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21(1–3) (1991)Google Scholar

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society 2019

Authors and Affiliations

  • Eyakifama Hazou
    • 1
    • 2
  • Cebastien Joel Guembou Shouop
    • 3
    • 4
    • 5
    Email author return OK on get
  • Eric Jilbert Nguelem Mekongtso
    • 3
    • 4
  • Maurice Ndontchueng Moyo
    • 3
    • 4
  • Jean Felix Beyala Ateba
    • 4
  • Paalamwé Komi Tchakpele
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity of LoméLoméTogo
  2. 2.Laboratoire de Physique des Matériaux et des Composants à Semi-conducteurs (LPMCS)University of LoméLoméTogo
  3. 3.Department of Physics, Faculty of ScienceUniversity of DoualaDoualaCameroon
  4. 4.National Radiation Protection AgencyYaoundéCameroon
  5. 5.Atomic and Nuclear Spectroscopy, ArcheometryUniversity of LiègeLiege 1Belgium

Personalised recommendations