Advertisement

Spatial resolution optimization in a THGEM-based UV photon detector

  • P. Ray
  • G. Baishali
  • V. Radhakrishna
  • K. Rajanna
Original Paper
  • 236 Downloads

Abstract

Introduction

THick Gas Electron Multiplier (THGEM) is considered in many UV photon detector applications. It has the capability of detecting single photon and imaging with high sensitivity. Operating parameters such as choice of gas mixture, pressure, drift field, drift gap, multiplication voltage, induction field and induction gap play an important role in deciding the spatial resolution of the detector. Detailed simulation study enables to optimize the above-mentioned parameters for a given THGEM-based imaging detector and hence to achieve improved performance for the same.

Materials and methods

Simulation, using ANSYS and Garfield++, starts with the release of primary electrons at random coordinates on the photocathode plane. They are tracked as they pass through the drift gap and THGEM hole till the electron cloud reaches anode plane. Distribution of electron cloud on the anode plane along X and Y axis is plotted in histogram and fitted with Gaussian function to determine spatial resolution. Ar/CO2 (70:30) mixture, which shows higher ETE and lower transverse diffusion, is chosen for this simulation study.

Conclusion

Transverse diffusion has a major impact on both ETE and the spatial resolution. Lower transverse diffusion coefficient is always desired for having better resolution as well as for ETE. It is found from the simulation study that higher gas pressure, lower drift field and induction field, smaller drift and induction gap can provide optimum detection efficiency with the best spatial resolution. The simulation method proposed here can also be extended to X-ray imaging detectors.

Keywords

Thick gas electron multiplier (THGEM) UV photon detectors Electron transfer efficiency Spatial resolution simulation Garfield++ 

References

  1. 1.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 477(1), 1–7 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 535(1), 303–308 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Buzulutskov, Instrum. Exper. Tech. 50(3), 287–310 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Cortesi et al., J. Instrum. 8(10), C10009 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Sauli, Nucl. Instrum. Methods Phys. Res. A 386(2–3), 531–534 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    F. Tessarotto, Evolution and recent developments of the gaseous photon detectors technologies. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2017).  https://doi.org/10.1016/j.nima.2017.11.081
  7. 7.
    R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 553(1), 35–40 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Alexeev et al., Nucl. Instrum. Methods Phys. Res. A 732, 264–268 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    R. Chechik et al., Nucl. Instrum. Methods Phys. Res. A 595(1), 116–127 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Di Mauro, Nucl. Instrum. Methods Phys. Res. A 766, 126–132 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C. Shalem et al., Nucl. Instrum. Methods Phys. Res. A 558(2), 475–489 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Maia et al., Nucl. Instrum. Methods Phys. Res. A 580(1), 373–376 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Bamberger et al., Nucl. Instrum. Methods Phys. Res. A 572(1), 157–159 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Cortesi et al., J. Instrum. 2(09), P09002 (2007)CrossRefGoogle Scholar
  15. 15.
    V.N. Kudryavtsev et al., Nucl. Instrum. Methods Phys. Res. A 845, 289–292 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Lan-Lan et al., arXiv preprint arXiv:1306.0270 (2013)
  17. 17.
    H. Zhao et al., Radiat. Detect. Technol Methods 1(1), 6 (2017)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    G. Baishali et al., Nucl. Instrum. Methods Phys. Res. A 729, 51–57 (2013)ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    C.D.R. Azevedo et al., J. Instrum. 11(08), P08018 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Moleri et al., On the localization properties of an RPWELL gas-avalanche detector. J Instrum 12(10), P10017 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Assran, A. Sharma, arXiv preprint arXiv:1110.6761 (2011)
  24. 24.
    A. Breskin, Nucl. Instrum. Methods Phys. Res. A 367(1-3), 326–331 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    A. Breskin et al., Nucl. Instrum. Methods Phys. Res. A 478(1–2), 225–229 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    C. Shalem, M.Sc. thesis, Weizmann Institute of Science. http://jinst.sissa.it/jinst/theses/2005_JINST_TH_001.pdfS

Copyright information

© Institute of High Energy Physics, Chinese Academy of Sciences; Nuclear Electronics and Nuclear Detection Society and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Ray
    • 1
  • G. Baishali
    • 2
  • V. Radhakrishna
    • 3
  • K. Rajanna
    • 1
  1. 1.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsDayananda Sagar UniversityBangaloreIndia
  3. 3.Space Astronomy GroupISRO Satellite CentreBangaloreIndia

Personalised recommendations