Lasers in Dental Science

, Volume 2, Issue 4, pp 201–211 | Cite as

Antibacterial effect of Er:YAG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review

  • Khaled SmeoEmail author
  • Riman Nasher
  • Norbert Gutknecht
Review Article


The aim

The present study aims to conduct a descriptive analysis by reviewing in vivo and in vitro studies concerned with the antibacterial effect of Er:YAG laser (2940 nm) and their effects on implant surfaces at different parameters for peri-implantitis treatment.

Materials and methods

The PubMed and Google Scholar had been used to search for articles focused on the antibacterial effect of Er:YAG laser (2940 nm) in the treatment of peri-implantitis and their effects on implant surfaces. This literature search was limited to 10 years (January 2007–March 2017).


The safe settings of Er:YAG laser (2940 nm) which may be used as an antibacterial effect without surface alteration or increase of temperature in the treatment of peri-implantitis are 100 mJ/pulse, 1 W, 10 Hz, and 12.74 J/cm2 for 60 s.


A consideration should be taken when Er:YAG laser 2940 nm wavelength is used to avoid a negative thermal and characteristic effect on the implant surfaces, where the favorable settings which can be used in the treatment of peri-implantitis are 100 mJ/pulse, 1 W, 10 Hz, and 12.74 J/cm2 for 60 s.


Dental implant Periimplantitis Peri-implantitis Periimplant Dental implant surface Decontamination Disinfection Antibacterial effect Bactericidal effect Er:YAG laser Laser treatment and laser therapy 



Er;YAG laser


Titanium plasma sprayed


Pulse wave


Mucosal recession






Pocket depth


Sand blasted, large grit, acid-etched




Plaque index


Yittrium-stabilized tetragonal zirconia polycrystal




Bleeding on probing


Cotton pellets + plastic curets + sterile saline




Low-power setting


High power setting


Clinical attachment level


Fluoride modified


Sandblasted and acid-etched


Anodic oxidized

N info

No information






Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Misch CE (2007) Contemporary implant dentistry, 3rd edn. Mosby, St. Louis, pp 3–25Google Scholar
  2. 2.
    Greenstein G, Cavallaro J, Romanos G, Tarnow D (2008) Clinical recommendation for avoiding and managing surgical complications associated with implant dentistry. A review. J Periodontol 79:1317–1329. CrossRefPubMedGoogle Scholar
  3. 3.
    Porter JA, von Fraunhofer JA (2005) Success or failure of dental implants? A literature review with treatment considerations. Gen Dent 53(6):423–432PubMedGoogle Scholar
  4. 4.
    Malet J, Mora F, Bouchard P (2012) Implant dentistry at a glance, 1st edn. Wiley-Blackwell, Chichester, pp 24, 25, 102, 103, 106–108Google Scholar
  5. 5.
    Rosen P, Cochran D, Froum S, McAllister B, Renvert S, Wang H-L (2013) Peri-implant mucositis and peri-implantitis: a current understanding of their diagnosis and clinical implications. J Periodontol 84:436–443. CrossRefGoogle Scholar
  6. 6.
    Figuero E, Graziani F, Sanz I, Herrera D, Sanz M (2014) Management of peri-implant mucositis and peri-implantitis. Periodontol 66:255–273CrossRefGoogle Scholar
  7. 7.
    Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H (2013) Laser use in dental implantology. Implant Dent 22:282–288. CrossRefPubMedGoogle Scholar
  8. 8.
    Scott Froum DDS (2011) Review of the treatment protocols for peri-implantitis. online article available at website of the treatment protocols for peri-implantitis.html.
  9. 9.
    Alshehri FA (2016) The role of lasers in the treatment of peri-implant diseases: a review. Saudi Dent J 28:103–108CrossRefPubMedGoogle Scholar
  10. 10.
    Javed F, Romanos GE (2009) Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol 80:1719–1730. CrossRefPubMedGoogle Scholar
  11. 11.
    Renvert S, Quirynen M (2015) Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res 26:15–44. CrossRefPubMedGoogle Scholar
  12. 12.
    Maruyama N, Maruyama F, Takeuchi Y, Aika- wa C, Izumi Y, Nakagawa I (2014) Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep 4:6602. CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Heitz-Mayfield LJ, Lang NP (2010) Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 53:167–181. CrossRefGoogle Scholar
  14. 14.
    Renvert S, Polyzois I (2015) Risk indicators for peri-implant mucositis: a systematic literature review. J Clin Periodontol 42:172–186. CrossRefGoogle Scholar
  15. 15.
    Lang NP, Berglundh T (2011) Periimplant diseases: where are we now?—consensus of the seventh European workshop on periodontology. J Clin Periodontol 38:178–181. CrossRefPubMedGoogle Scholar
  16. 16.
    Linkevicius T, Puisys A, Vindasiute E, Linke-viciene L, Apse P (2013) Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res 24:1179–1184. CrossRefPubMedGoogle Scholar
  17. 17.
    Dalago HR, Schuldt Filho G, Rodrigues MA, Renvert S, Bianchini MA (2016) Risk indicators risk indicators for peri-implantitis. A cross sectional study with 916 patients. Clinical Oral Implants 00:1–7. CrossRefGoogle Scholar
  18. 18.
    Strietzel FP, Reichart PA, Kale A, Kulkarni M, Wegner B, Kuchler I (2007) Smoking interferes with the prognosis of dental implant treatment: a systematic review and meta-analysis. J Clin Periodontol 34:523–544. CrossRefPubMedGoogle Scholar
  19. 19.
    Klokkevold PR, Han TJ (2007) How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? Int J Oral Maxillofac Implants 22:173–202PubMedGoogle Scholar
  20. 20.
    Rinke S, Ohl S, Ziebolz D, Lange K, Eickholz P (2011) Prevalence of peri-implant disease in partially edentulous patients: a practice based cross sectional study. Clin Oral Implants Res 22:826–833. CrossRefPubMedGoogle Scholar
  21. 21.
    Laine ML, Leonhardt A, Roos-Jansa ker AM et al (2006) IL1RN gene polymorphism is associated with periimplantitis. Clin Oral Implants Res 17:380–385. CrossRefPubMedGoogle Scholar
  22. 22.
    Fu J-H, Hsu Y-T, Wang H-L (2012) Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol 5:91–103Google Scholar
  23. 23.
    Oates TW, Dowell S, Robinson M, McMahan CA (2009) Glycemic control and implant stabilization in type 2 diabetes mellitus. J Dent Res 88:367–371. CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Krennmair G, Seemann R, Piehslinger E (2010) Dental implants in patients with rheumatoid arthritis: clinical outcome and peri-implant findings. J Clin Periodontol 37:928–936. CrossRefPubMedGoogle Scholar
  25. 25.
    Galindo-Moreno P, Fauri M, Avila-Ortiz G, Fernandez Barbero JE, Cabrera-Leon A, Sanchez-Fernandez E (2005) Influence of alcohol and tobacco habits on peri-implant marginal bone loss: a prospective study. Clin Oral Implants Res 16:579–586. CrossRefPubMedGoogle Scholar
  26. 26.
    Froum SJ, Rosen PS (2012) A proposed classification for peri-implantitis. Int J Periodontics Restorative Dent 32:533–540PubMedGoogle Scholar
  27. 27.
    Bobia F, Pop RV (2010) Periimplantitis. Aetiology, diagnosis, treatment. A review from the literature. Curr Health Sci J 36:171–175Google Scholar
  28. 28.
    Algraffee H, Borumandi F, Cascarini L (2011) Peri-implantitis (review). Br J Oral Maxillofac Surg 50:689–694. CrossRefPubMedGoogle Scholar
  29. 29.
    Prathapachandran J, Suresh N (2012) Management of peri-implantitis. Dent Res J (Isfahan) 9:516–521CrossRefGoogle Scholar
  30. 30.
    Roncati M, Lucchese A, Carinci F (2013) Non-surgical treatment of peri-implantitis with the adjunctive use of an 810 nm diode laser. J Indian Soc Periodontol 17:812–815CrossRefPubMedGoogle Scholar
  31. 31.
    Smeets R, Henningseng A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis, a review. Head Face Med 10:4–8. CrossRefGoogle Scholar
  32. 32.
    Meyle J (2012) Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around dental implants. Eur J Oral Implantol 5:71–81Google Scholar
  33. 33.
    Khandge N, Pradhan S, Doshi Y, Kulkarni A (2013) Comparison of the effects of different laser wavelengths on implants surfaces. Int J Laser Dentistry 3:14–18CrossRefGoogle Scholar
  34. 34.
    Convissar RA (2015) Principles and practice of laser dentistry, 2nd edn, pp 107–109Google Scholar
  35. 35.
    Dr. rer. Medic. René Franzen lectures. Module 5, 24-30.10.2016. Master of science in laser in dentistry, EN2015, Aachen universityGoogle Scholar
  36. 36.
    Dr. rer. Medic. René Franzen lectures. Module 3, 14-18.03.2016. Master of science in laser in dentistry, EN2015, Aachen UniversityGoogle Scholar
  37. 37.
    Bader C, Krejci I (2006) Indication and limitation of Er:YAG laser applications in dentistry. Am J Dent 19:181Google Scholar
  38. 38.
    Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, Jansen B, D'Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surface: an in vitro study. J Periodontol 73:1292–1298. CrossRefPubMedGoogle Scholar
  39. 39.
    Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22:143–157. CrossRefPubMedGoogle Scholar
  40. 40.
    Yan M, Liu M, Wang M, Yin F, Xia H (2015) The effects of Er:YAG on the treatment of peri-implantitis: a meta-analysis of randomized controlled trials. Lasers Med Sci 30:1843–1853. CrossRefPubMedGoogle Scholar
  41. 41.
    Kamel MS, Khosa A, Tawse-Smith A, Leichter J (2014) The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies. Lasers Med Sci 29:1977–1985. CrossRefPubMedGoogle Scholar
  42. 42.
    Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R (2010) Surface alteration of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111PubMedGoogle Scholar
  43. 43.
    Romanos GE, Gutknecht N, Dieter S, Schwarz F, Crespi R, Sculean A (2009) Laser wavelengths and oral implantology: Review Article. Lasers Med Sci 24:961–970CrossRefPubMedGoogle Scholar
  44. 44.
    Friedmann A, Antic L, Bernimoulin J-P, Purucker P (2006) In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er:YAG laser. J Biomed Mater Res 79A:53–60. CrossRefGoogle Scholar
  45. 45.
    Schwarz F, Sahm N, Iglhaut G, Becker J (2011) Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol 38:276–284. CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Y, Zhang Y, Miron RJ (2015) Health, maintenance, and recovery of soft tissues around implants. Clin Implant Dent Relat Res 18:618–634. CrossRefPubMedGoogle Scholar
  47. 47.
    Takasaki AA, Mizutani K, Schwarz F et al (2009) Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 51:109–140. CrossRefGoogle Scholar
  48. 48.
    Rutger Persson G, Roos-Jansaker A-M, Lindahl C, Renvert S (2011) Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 82:1267–1278. CrossRefPubMedGoogle Scholar
  49. 49.
    Renvert S, Lindahl C, Roos Jansaker A-M, Persson GR (2011) Treatment of peri-implantitis using Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol 38:65–73. CrossRefPubMedGoogle Scholar
  50. 50.
    Badran Z, Bories C, Struillou X, Saffarzadeh A, Verner C, Soueida A (2011) Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol. CrossRefPubMedGoogle Scholar
  51. 51.
    Schwarz F, John G, Mainusch S, Sahm N, Becker J (2012) Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. J Clin Periodontol 39:789–797. CrossRefPubMedGoogle Scholar
  52. 52.
    Schwarz F, Hegewald A, John G, Sahm N, Becker J (2013) Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol 40:962–967. CrossRefPubMedGoogle Scholar
  53. 53.
    Schwarz F, John G, Hegewald A, Becker J (2015) Non-surgical treatment of peri-implant mucositis and peri-implantitis at zirconia implants: a prospective case series. J Clin Periodontol 42:783–788. CrossRefPubMedGoogle Scholar
  54. 54.
    Hauser-Gerspach I, Mauth C, Waltimo T, Meyer J, Stübinger S (2014) Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci 29:1329–1337. CrossRefPubMedGoogle Scholar
  55. 55.
    Scarano A, Nardi G, Murmura G, Rapani M, Mortellaro C (2016) Evaluation of the removal bacteria on failed titanium implants after irradiation with erbium-doped yttrium aluminium garnet laser. J Craniomaxillofac Surg 27:1202–1204. CrossRefGoogle Scholar
  56. 56.
    Chen C-J, Ding S-J, Chen C-C (2016) Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 34:379–388. CrossRefPubMedGoogle Scholar
  57. 57.
    Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F (2016) Decontamination of titanium implants using physical methods. Clin Oral Implants Res 00:1–9. CrossRefGoogle Scholar
  58. 58.
    Stübinger S, Homann F, Etter C, Miskiewicz M, Wieland M, Sader R (2008) Effect of Er:YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 40:223–228. CrossRefPubMedGoogle Scholar
  59. 59.
    Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C (2009) Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol 80:1824–1832. CrossRefPubMedGoogle Scholar
  60. 60.
    Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM (2009) Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 27:473–479. CrossRefPubMedGoogle Scholar
  61. 61.
    Kim S-W, Kwon Y-H, Chung J-H, Shin S-I, Herr Y (2010) The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant. J Periodontal Implant Sci 40:276–282. CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Stübinger S, Etter C, Miskiewicz M, Homann F, Saldamli B, Wieland M, Sader R (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25:104–111PubMedGoogle Scholar
  63. 63.
    Lee J-H, Kwon Y-H, Herr Y, Shin S-I, Chung J-H (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. J Periodontal Implant Sci 41:135–142. CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, Passeri G (2011) The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–1177. CrossRefPubMedGoogle Scholar
  65. 65.
    Shin S-I, Min H-K, Park B-H, Kwon Y-H, Park J-B, Herr Y, Heo S-J, Chung J-H (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26:767–776. CrossRefPubMedGoogle Scholar
  66. 66.
    Kim J-H, Herr Y, Chung J-H, Shin S-I, Kwon Y-H (2011) The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants. J Periodontal Implant Sci 41:234–241. CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Geminiani A, Caton JG, Romanos GE (2011) Temperature increase during CO2 and Er:YAG irradiation on implant surfaces. Implant Dent 20:1. CrossRefGoogle Scholar
  68. 68.
    Park J-H, Heo S-J, Koak J-Y, Kim S-K, Han C-H, Lee J-H (2012) Effects of laser irradiation on machined and anodized titanium disks. Int J Oral Maxillofac Implants 27:265–272PubMedGoogle Scholar
  69. 69.
    Yamamoto A, Tanabe T (2013) Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser Microexplosion. Int J Periodontics Restorative Dent 33:21–29. CrossRefPubMedGoogle Scholar
  70. 70.
    Shin S-I, Lee E-K, Kim J-H, Lee J-H, Kim S-H, Kwon Y-H, Herr Y, Chung J-H (2013) The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28:823–831. CrossRefPubMedGoogle Scholar
  71. 71.
    Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y (2013) Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci 28:1057–1068. CrossRefPubMedGoogle Scholar
  72. 72.
    Turp V, Akgungor G, Sen D, Tuncelli B (2014) Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching. Photomed Laser Surg 32:533–539. CrossRefPubMedGoogle Scholar
  73. 73.
    Arami S, Tabatabae MH, Namdar SF, Chiniforush N (2014) Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics. J Dent, Tehran University of Medical Sciences 11:233–241Google Scholar
  74. 74.
    Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2015) Effects of Er:YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30:561–566. CrossRefPubMedGoogle Scholar
  75. 75.
    Caglar I, Yanıkoglu N (2016) The effect of sandblasting, Er:YAG laser, and heat treatment on the mechanical properties of different zirconia cores. Photomed Laser Surg 34:17–26. CrossRefPubMedGoogle Scholar
  76. 76.
    Prof. Dr. med. dent. Norbert Gutknecht lectures. Module 3. 14-20.03.2016. Master of science in laser in dentistry. Aachen University. “EN2015”Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Periodontology and Preventive Dentistry, Faculty of DentistryAl Asmarya UniversityZlitenLibya
  2. 2.Department of Conservative Dentistry, Periodontology and Preventive DentistryRWTH Aachen University HospitalAachenGermany

Personalised recommendations