Advertisement

Journal of Iberian Geology

, Volume 45, Issue 4, pp 625–640 | Cite as

Tungsten mineralization associated with the Argemela microgranite (Central Portugal)

  • L. LimaEmail author
  • A. Guedes
  • F. Noronha
Research Paper
  • 58 Downloads

Abstract

The Argemela microgranite is a late- to post-tectonic granite (305–300 Ma), and is an example of a late Variscan small intrusion of W-enriched granite with magmatic cassiterite, columbite and Li-micas. The occurrence of this type of magmatism is very rare in the European Variscan Belt. A quarry where this microgranite intrusion has been exploited for ceramic applications revealed the border of an aplite cross-cut by two types of quartz veinlets: type I with quartz, K-feldspar ± amblygonite; and type II with quartz and wolframite mineralization, thus allowing the study of a W-mineralization which is intimately associated with a highly-differentiated magmatic system. In this work, detailed mineralogical, geochemical and fluid inclusion studies are presented, in an attempt to reconstruct the P–T-x conditions responsible for different stages of fluid evolution. We have found magmatic and hydrothermal aqueous-carbonic fluids (H2O–CO2–CH4–N2–NaCl) associated with the late crystallization of the Argemela microgranite, and also responsible for the later formation of the two types of veinlets. The Argemela fluid system is characterized by an increase of CO2 in the volatile phase and a decrease in salinity throughout the transition from magmatic to hydrothermal stage. Most importantly, the late stages correspond to the period of tungsten deposition at pressures below 100 MPa.

Keywords

Wolframite Magmatic-hydrothermal Fluid inclusions Argemela microgranite Portugal 

Resumen

El microgranito de Argemela es un granito tardío o post-tectónico (305 a 300 Ma), este es un ejemplo de una pequeña intrusión Varisca de un granito enriquecido con W, casiterita magmática, columbita y Li-micas. La aparición de este tipo de magmatismo es muy rara en el Cinturón Varisco europeo. Una cantera en la que esta intrusión de microgranito ha sido explotada para aplicaciones cerámicas, reveló en el entorno una aplita cortada transversalmente por dos tipos de venas de cuarzo: El tipo I con cuarzo, feldespato K ± ambliogonita; y el tipo II con mineralización de cuarzo y wolframita, esto permite el estudio de una mineralización de W que está íntimamente asociada con un sistema magmático altamente diferenciado. En este trabajo se presentan estúdios detallados de mineralogía, geoquímica y de inclusiones fluidas en un intento de reconstruir las condiciones de P yT-x responsables de las diferentes etapas de la evolución de los fluidos. Hemos encontrado fluidos acuosos carbónicos magmáticos e hidrotermales (H2O-CO2-CH4-N2-NaCl) asociados con la cristalización tardía del microgranito de Argemela, y también responsables de la formación posterior de dos tipos de venas. El sistema de fluidos de Argemela se caracteriza por un aumento de CO2 en la fase volátil y una disminución de la salinidad en la transición de la etapa magmática a la hidrotermal. Lo más importante es que las etapas tardías corresponden al período de deposición del tungsteno a presiones inferiores a 100 MPa.

Palabras clave

volframita magmático-hidrotermal inclusiones fluidas microgranito de Argemela Portugal 

Notes

Acknowledgements

The authors acknowledge the POCTEP-Interreg Project 0284_ESMIMET_3_E “Development of exploitation environmental and energy techniques in metallic mining” ESMIMET for the financial support. The author Luís Lima has a Grant financed by POCTEP-Interreg Project 0284_ESMIMET_3_E “Development of exploitation environmental and energy techniques in metallic mining”. The authors also acknowledge the “Instituto de Ciências da Terra (ICT), Polo Porto” for making the laboratories available for carrying out the studies presented in this paper. The authors would like to acknowledge the anonymous reviewers and to the editor, Dr. Teresa Ubide, for their contribution to improve the manuscript.

Supplementary material

41513_2019_113_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Alfonso, P., Hamid, S. A., Garcia-Valles, M., Llorens, T., López Moro, F. J., Tomasa, O., et al. (2018). Textural and mineral-chemistry constraints regarding the columbite-group minerals in the Penouta deposit: Evidences of magmatic and fluid-related processes. Mineralogical Magazine,82(S1), S199–S222.  https://doi.org/10.1180/minmag.2017.081.107.CrossRefGoogle Scholar
  2. Arenas, R., & Catalán, J. R. M. (2003). Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondonedo thrust sheet (NW Iberian Massif). Tectonophysics,365, 143–164.Google Scholar
  3. Arthaud, F., & Matte, P. H. (1975). Les décrochements tardi hercyniens du Sud-Ouest de l’Europe Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics,25(1/2), 139–171.Google Scholar
  4. Audetat, A., Gunther, D., & Heinrich, C. A. (2000). Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta,64, 3373–3393.Google Scholar
  5. Bakker, R. J. (1995). The application of a computerized and optimized clathrate stability model to fluid inclusion studies. Boletín de la Sociedad Española de Mineralogía.,18–1, 15–17.Google Scholar
  6. Bakker, R. J. (1999). Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system. Chemical Geology,154, 225–236.Google Scholar
  7. Bakker, R. J., Dubessy, J., & Cathelineau, M. (1996). Improvements in the clathrate modeling: I. The H2O–CO2 system with various salts. Geochimica et Cosmochimica Acta,60, 1657–1681.Google Scholar
  8. Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta,57, 683–684.Google Scholar
  9. Boiron, M. C., Cathelineau, M., Banks, D., Yardley, B., Noronha, F., & Miller, M. F. (1996). P-T-X conditions of fluid penetration in the basement during retrograde metamorphism and uplift: a multidisciplinary investigation of bulk and individual fluid inclusion chemistry from NW Iberian quartz veins. Geochimica et Cosmochimica Acta,60, 43–57.Google Scholar
  10. Boiron, M. C., Essarraj, S., Sellier, E., Cathelineau, M., Lespinasse, M., & Poty, B. (1992). Identification of fluid inclusions in relation with their host microstructural domains in quartz by cathodoluminescence. Geochimica et Cosmochimica Acta,56, 175–185.Google Scholar
  11. Bowers, T. S., & Helgeson, H. C. (1983). Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geological systems: Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta,47, 1247–1275.Google Scholar
  12. Breiter, K., Durisová, J., Hrstka, T., Korbelová, Z., Vanková, M. H., Galiová, M. V., et al. (2017). Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe. Lithos,292–293, 198–217.Google Scholar
  13. Breiter, K., Förster, H.-J., & Škoda, R. (2006). Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos,88(1–4), 15–34.  https://doi.org/10.1016/j.lithos.2005.08.011.CrossRefGoogle Scholar
  14. Breiter, K., Frýda, J., Seltmann, R., & Thomas, R. (1997). Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: The Podlesí Stock, Krušné Hory, Czech Republic. Journal of Petrology,38(12), 1723–1739.  https://doi.org/10.1093/petroj/38.12.1723.CrossRefGoogle Scholar
  15. Breiter, K., Hlozková, M., Korbelová, Z., & Galiová, M. V. (2019). Diversity of lithium mica compositions in mineralized granite–greisensystem: Cínovec Li–Sn–W deposit, Erzgebirge. Ore Geology Reviews,106, 12–27.  https://doi.org/10.1016/j.oregeorev.2019.01.013.CrossRefGoogle Scholar
  16. Charoy, B., & Noronha, F. (1996). Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). Journal of Petrology,37, 73–94.Google Scholar
  17. Che, X. D., Linnen, R. L., Wang, R. C., Aseri, A., & Thibault, Y. (2013). Tungsten solubility in evolved granitic melts: An evaluation of magmatic wolframite. Geochimica et Cosmochimica Acta,106, 84–98.Google Scholar
  18. Chicharro, E., Boiron, M. C., López-García, J. A., & Barfod, D. N. (2016). Origin ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian zone, Spain). Ore Geology Reviews,72, 896–913.  https://doi.org/10.1016/j.oregeorev.2015.09.020.CrossRefGoogle Scholar
  19. Chicharro, E., Martín-Crespo, T., Gómez-Ortiz, D., López-García, J. A., Oyarzun, R., & Villaseca, C. (2014). Geology and gravity modeling of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain). Ore Geology Reviews.  https://doi.org/10.1016/j.oregeorev.2014.10.005.CrossRefGoogle Scholar
  20. Cuney, M., Marignac, C., & Weisbrod, A. (1992). The Beauvoir topaz lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Economic Geology,87, 1766–1794.Google Scholar
  21. Dallmeyer, R. D., Martinez Catalán, J. R., Arenas, R., Gil Ibarguichi, J. I., Gutiérrez-Alonso, G., Farias, P., et al. (1997). Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics,277, 307–337.  https://doi.org/10.1016/S0040-1951(97)00035-8.CrossRefGoogle Scholar
  22. Day, H. W. (1973). The high stability of muscovite plus quartz. American Mineralogist,58, 255–262.Google Scholar
  23. Dias, G., Leterrier, J., Mendes, A. C., Simões, P. P., & Bertrand, J. M. (1998). U-Pb zircon and monazite geochronology of post-collisional hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos,45, 349–369.  https://doi.org/10.1016/S0024-4937(98)00039-5.CrossRefGoogle Scholar
  24. Dubessy, J. (1984). Simulation des équilibres chimiques dans le système C–O–H. Consequenses mèthodologiques pour les inclusions fluides. Bulletin de Mineralogie,107, 155–168.Google Scholar
  25. Eadington, P. J. (1983). A fluid inclusion investigation of ore formation in a tin-mineralized granite. New England, New South Wales Economic Geology,78, 1204–1221.Google Scholar
  26. Haapala, I. (1997). Magmatic and postmagmatic processes in tin-mineralized granites: Topaz-bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland. Journal of Petrology,38(12), 1645–1659.  https://doi.org/10.1093/petroj/38.12.1645.CrossRefGoogle Scholar
  27. Hulsbosch, N., Boiron, M. C., Dewaele, S., & Muchez, P. (2016). Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda). Geochimica et Cosmochimica Acta,175, 299–318.Google Scholar
  28. Inverno, C. M. C., & Ribeiro, M. L. (1980). Fracturing and vein system in Minas da Argemela (Fundão). Comunicações dos Serviços Geológicos de Portugal,66, 185–193.Google Scholar
  29. Julivert, M., Fontboté, J.M∂., Ribeiro, A., Conde, L. (1974). Mapa Tectónico de la Península Ibérica y Baleares. Escala 1: 1,000,000. Memória Explicativa. Instituto Geológico y Minero de España, Madrid, 113.Google Scholar
  30. Kelly, W. C., & Rye, R. O. (1979). Geologic, fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology,74, 1721–1822.Google Scholar
  31. Knight, C. L., & Bodnar, R. J. (1989). Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl-H2O solutions. Geochimica et Cosmochimica Acta,53, 3–8.Google Scholar
  32. Lehmann, B. (1990). Metallogeny of tin, Lecture notes in earth sciences 32, (Ed) Springer-Verlag, 211.Google Scholar
  33. Linnen, R. L. (1998). The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li + F: Constraints for mineralization in rare metal granites and pegmatites. Economic Geology,93, 1013–1025.Google Scholar
  34. Linnen, R. L., Cuney, M. (2005). Granite-related rare-element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In: Rare element geochemistry and mineral deposits (Eds.) Linnen, R. L., Samson, I. M. Geological Association of Canada Short Course Notes, vol. 17, pp. 45–68. St. John’s, NL: Geological Association of Canada.Google Scholar
  35. López Moro, F. J., García, Polonio F., Llorens, González T., Sanz Contreras, J. L., Fernández-Fernández, A., & Moro Benito, M. C. (2017). Ta and Sn concentration by muscovite fractionation and degassing in a lens-like granite body: The case study of the Penouta rare-metal albite granite (NW Spain). Ore Geology Reviews,82, 10–30.Google Scholar
  36. Mangas, J., & Arribas, A. (1987). Fluid inclusion study in different types of tin deposits associated with the Hercynian granites of western Spain. Chemical Geology,61, 193–208.  https://doi.org/10.1016/0009-2541(87)90039-8.CrossRefGoogle Scholar
  37. Mangas, J., & Arribas, A. (1991). Fluid inclusion study of tin-mineralized greisens and quartz veins in the Penouta apogranite (Orense, Spain). Mineralogical Magazine,55, 211–223.Google Scholar
  38. Marques, F. O., Mateus, A., & Tassinari, C. (2002). The Late-Variscan fault network in central–northern Portugal (NW Iberia): A re-evaluation. Tectonophysics,359(3–4), 255–270.Google Scholar
  39. Martinez, F. J., Julivert, M., Sebastian, A., Arboleya, M. L., & Ibargughi, J. I. (1988). Structural and thermal evolution of high-grade areas in the northwestern parts of the Iberian Massif. American Journal of Science,288, 969–996.Google Scholar
  40. Michaud, J., & Pichavant, M. (2019). The H/F ratio as an indicator of contrasted wolframite deposition Mechanisms. Ore Geology Reviews,104, 266–272.  https://doi.org/10.1016/j.oregeorev.2018.10.015.CrossRefGoogle Scholar
  41. Muller, A., Seltmann, R., (1999) The genetic significance of snowball quartz in high fractionated tin granites of the Krušne Hory/Erzgebirge, in: Mineral deposits: Processes to processing, (eds) Stanley et al., Rotterdam, ISBN: 905809068 X.Google Scholar
  42. Naumov, V. B., Dorofeev, V. A., & Mironova, O. F. (2011). Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits. Geochemistry International,49, 1002–1021.Google Scholar
  43. Neiva, A. M. R., Gomes, C. L., & Silva, P. B. (2015). Two generations of zoned crystals of columbite-group minerals from granitic aplite–pegmatite in the Gouveia area, central Portugal. European Journal of Mineralogy,27(6), 771–782.  https://doi.org/10.1127/ejm/2015/0027-2473.CrossRefGoogle Scholar
  44. Neiva, A. M. R., Williams, I. S., Lima, S. M., & Teixeira, R. J. S. (2012). U-Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos,153, 72–83.Google Scholar
  45. Noronha, F. (2017). Fluids and variscan metallogenesis in granite related systems in Portugal. Procedia Earth and Planetary Science,17, 1–4.Google Scholar
  46. Noronha, F, Ribeiro, M.A., Almeida, A., Dória, A., Guedes. A., Lima, A., Martins, H. C., Sant’Ovaia, H., Nogueira, P., Martins, T., Ramos, R., Vieira, R. (2013). Jazigos filonianos hidrotermais e aplitopegmatíticos espacialmente associados a granitos (Norte Portugal). in: Geologia de Portugal Vol. I, Geologia Pré-Mesozoica de Portugal (Eds) Dias R, Araùjo A, Terrinha P, Kulberg J C C K, Escolar E Editora.Google Scholar
  47. Oliveira, J. T., Pereira, E., Ramalho, M., Antunes, M. T., Monteiro, J. H. (1992). Folha Norte da Carta Geológica de Portugal na escala 1:500,000, Serviços Geológicos de Portugal.Google Scholar
  48. Onézime, J., Charvet, M. F., Bourdier, J. L., & Chauvet, A. (2003). A new geodynamic interpretation for the South Portuguese Zone (SW Iberia) and the Iberian Pyrite Belt genesis. Tectonics,22(4), 17.Google Scholar
  49. Poty, B., Leroy, J., & Jachimowicz, L. (1976). Un nouvel appareil pour la mesure des temperatures sous le microscope, l’installation de microthermome´trie Chaixmeca. Bulletin de la Société Française de Minéralogie et de Cristallographie,99, 182–186.Google Scholar
  50. Prieto, A. C., Guedes, A., Dória, A., Noronha, F., & Jiménez, J. (2012). Quantitative determination of gaseous phase compositions in fluid inclusions by Raman microspectrometry. Spectroscopy Letters,45(2), 156–160.  https://doi.org/10.1080/00387010.2011.628737.CrossRefGoogle Scholar
  51. Ramboz, C., Schnappeer, D., & Dubessy, J. (1985). The P–V–T–X–fO2 evolution of H2O–CO2CH4-bearing fluids in a wolframite vein: reconstruction from fluid inclusion studies. Geochimica et Cosmochimica Acta,49, 205–221.Google Scholar
  52. Ribeiro, A., & Pereira, E. (1982). Controles paleogeográficos, petrológicos e estruturais na génese dos jazigos portugueses de estanho e volfrâmio. Geonovas,1(3), 23–31.Google Scholar
  53. Ribeiro, A., Pereira, E., & Dias, R. (1990). Structure in the northwest of the iberian Peninsula. In R. D. Dallmeyer & E. Martínez Garcia (Eds.), Pre-mesozoic geology of iberia (pp. 220–236). Berlin: Springer.Google Scholar
  54. Roedder, E. (1972). Composition of fluid inclusions. U.S. Geological Survey Professional Paper. 440: 164.Google Scholar
  55. Roedder, E. (1984). Fluid Inclusions. Reviews in mineralogy, 12. Mineralogical Society of America. 644.Google Scholar
  56. Sant’Ovaia, H., Dória, A., Noronha, F. (2015). Emplacement of Argemela microgranite (Central Portugal): Constraints from AMS data and fluid inclusion planes. 15th International SGEM GeoConference.Google Scholar
  57. Schermerhorn, L. J. C. (1981). Framework and evolution of Hercynian mineralization in the Iberian Meseta. Leidse Geol. Med.,52(1), 23–56.Google Scholar
  58. Siivola, J., Schmid, R. (2007). Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web version 01.02.07. (http://www.bgs.ac.uk/scmr/docs/papers/paper_12.pdf) IUGS Commission on the Systematics in Petrology.
  59. Strong, D. F. (1981). A model for granophile mineral deposits. Geoscience Canada,8(4), 155–161.Google Scholar
  60. Thadeu, D. (1977). Hercynian paragenetic units of the Portuguese part of the Hesperic Massif. Boletim Sociedade Geológica de Portugal,20, 247–276.Google Scholar
  61. Thiery, R., Van der Kerkhof, A. M., & Dubessy, J. (1994a). V-X properties of CO2–CH4 and CO2–N2 fluid inclusions: modeling for T, 318C and P, 400 bars. European Journal of Mineralogy.,6, 753–771.Google Scholar
  62. Thiery, R., Vidal, J., & Dubessy, J. (1994b). Phase equilibria modeling applied to fluid inclusions: liquid–vapor equilibria and calculation of the molar volume in the CO2–CH4–N2 system. Geochimica et Cosmochimica Acta,58, 1073–1082.Google Scholar
  63. Thomas, R. (1994). Estimation of the viscosity and the water content of silicate melts from melt inclusion data. European Journal of Mineralogy, 6 511–535Google Scholar
  64. Touret, J. (1977). The significance of fluid inclusions in metamorphic rocks. In D. G. Fraser (Ed.), Thermodynamics in geology (pp. 203–227). Dordrecht: Reidel Publishing Company.Google Scholar
  65. Ugidos, J. M. (1990). Granites as a paradigm of genetic processes of granitic rocks: I-types vs S-types. In R. D. Dallmeyer & E. Martínez Garcia (Eds.), Pre-Mesozoic geology of Iberia (pp. 189–206). Berlin: Springer.Google Scholar
  66. Bodnar R. J., Vityk, M.O. (1994). Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Vivo, B., Frezzotti, M.L., (Ed.), Fluid inclusions in minerals: Methods and applications, Short Course IMA, pp. 117–130.Google Scholar
  67. White, J. S. (1981). Wolframite group. Mineralogy. Encyclopedia of earth science. Boston: Springer.Google Scholar
  68. Yardley, B. W. D., MacKenzie, W. S., Gullford, C. (2000). Altas of metamorphic rocks and their textures. Longman Scientific & Technical; 1 edition (November 1, 1990), ISBN:978-0582301665.Google Scholar
  69. Yin, L., Pollard, P. J., Hu, S., & Taylor, R. G. (1995). Geologic andgeochemical characteristics of the Yichun Ta–Nb–Li deposit, Jiangxi Province, South China. Economic Geology,90, 577–585.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Departamento de Geociências, Ambiente e Ordenamento de Território, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Departamento de Geociências, Ambiente e Ordenamento de TerritórioInstituto de Ciências da Terra, Polo Porto, Universidade do PortoPortoPortugal

Personalised recommendations