Advertisement

Insights into the speleogenesis of Ejulve cave (Iberian Range, NE Spain): quaternary hydrothermal karstification?

  • Carlos Pérez-MejíasEmail author
  • Carlos Sancho
  • Fernando Gázquez
  • Ana Moreno
  • Miguel Bartolomé
  • M. Cinta Osácar
  • Hai Cheng
Research Paper

Abstract

We provide first insights into the speleogenesis of Ejulve cave (Teruel province, Iberian Range, NE Spain) by studying cave morphologies and cave deposits, combined with regional geomorphological and hydrothermal observations. Three main hydrogeomorphic evolutionary stages can be distinguised to explain the origin and evolution of the Ejulve endokarstic system. Cave pattern and cave solutional features (calcite vein fillings, tubes with rising ceiling cupolas, pendants and cusps, spongework and micro-corrosion features) suggest that the cave generated in a phreatic environment by ascending water. Cave morphologies and regional hydrothermal springs in this region suggest, but not prove, the involvement of thermal waters and related convection and condensation-corrosion mechanisms in the origin of the cave. Subsequently, the cave underwent a change to epigenic conditions driven by denudation, as a result of regional uplift. Once the karstic system was exhumated, carbonate speleothems formed in a vadose environment. Mineralogical, petrographic, isotopic and chronological (U-series dating) analyses of carbonate speleothems (i.e. stalagmites, flowstones, botryoids, spars, acicular crystals and farmed carbonate) are provided. Calcite, high-Mg calcite and aragonite are the most common minerals, whereas columnar, dendritic, micrite, mosaics and fans are the main fabrics. Mean δ18O values of − 7.3‰ and δ13C values of − 9.1‰ indicate carbonate precipitation from meteoric waters without a hydrothermal origin. Carbonate deposits formed at least since 650 ka BP. Our study suggests that hydrothermal fluid flow may explain, although the evidences are not fully conclusive, the speleogenesis of this cave.

Keywords

Speleogenesis Cave morphologies Carbonate speleothems Meteoric regime Iberian range 

Resumen

Se aportan las primeras evidencias sobre la espeleogénesis de Ejulve (Teruel, Cordillera Ibérica, NE España) a través del estudio de morfologías y depósitos, junto a geomorfología regional y observaciones hidrotermales. Así, se pueden establecer tres etapas en la evolución hidro-geomórfica para explicar el origen y evolución del sistema endokárstico de Ejulve. El patrón de la cueva y las morfologías (venas de calcita, tubos con cúpulas ascendentes, pendants y cusps, spongework y rasgos de microcorrosión) sugieren que la cueva se ha generado en ambiente freático debido a aguas ascendentes. Las morfologías de la cueva y el hidrotermalismo regional en la región sugieren, aunque no prueban, la implicación de aguas termales y mecanismos de convección y condensación-corrosión en el origen de la cueva. Posteriormente, la cueva experimentó un cambio a condiciones epigénicas conducido por un proceso de denudación, como resultado de la elevación regional. Una vez que el sistema kárstico ha sido exhumado, se formaron los espeleotemas en un ambiente vadoso. Asimismo, se ofrecen análisis mineralógicos, petrográficos, isotópicos y cronológicos (series de uranio) en diferentes espeleotemas (estalagmitas, coladas, botroides, spar, cristales aciculares y carbonato precipitado). Las mineralogías más comunes son calcita, calcita con alto contenido en Mg y aragonito, mientras que las fábricas más comunes son columnar, dendrítica, micrítica, mosaicos y abanicos. Los valores medios de δ18O son de − 7.3‰ y δ13C de − 9.1‰, indicando precipitación de carbonato procedente de aguas meteóricas sin un origen hidrotermal. Los depósitos se formaron al menos desde hace 650 ka. Este estudio sugiere que fluidos hidrotermales pueden explicar, aunque las evidencias no son totalmente conclusivas, la espeleogénesis de esta cueva.

Palabras clave

espeleogénesis morfologías espeleotemas régimen meteórico Cordillera Ibérica 

Notes

Acknowledgements

We acknowledge the predoctoral research Grant from the Government of Aragón (B158/13) and CTM2013-48639-C2-2-R (OPERA) and CGL2016-77479-R (SPYRIT) projects for funding. Fernando Gázquez was financially supported by the “HIPATIA” research program of the University of Almeria. This is a contribution of “Procesos geoambientales y cambio global” group (E02_17R). We are also grateful to Belén Oliva-Urcía for her help in the fault measurements, Alfonso Meléndez for field examination of bedrock stratigraphy, Josep Elvira and Joaquin Perona for XRD analyses and stable isotope analyses, respectively. We also acknowledge the Ejulve Council for cave management, the use of Servicio General de Apoyo a la Investigación-SAI (University of Zaragoza), and the editor and two anonymous reviewers that improved the paper. This article is dedicated to the memory of Professor Carlos Sancho.

References

  1. Allmendinger, R. W., Cardozo, N., & Fisher, D. (2011). Structural geology algorithms: vectors and tensors. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Alonso-Zarza, A. M., & Martín-Pérez, A. (2008). Dolomite in caves: Recent dolomite formation in oxic, non-sulfate environments. Castañar Cave, Spain. Sedimentary Geology, 205, 160–164.CrossRefGoogle Scholar
  3. Álvaro, M., Capote, R., & Vegas, R. (1979). Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geológica Hispánica. Homenatge a Lluis Sole i Sabaris, T.14, 172–177.Google Scholar
  4. Angosto, M. C., & Latorre, J. L. (2000). Cavidades naturales del término municipal de Ejulve (Somontano turolense): datos espeleométricos y bioespeleológicos. Teruel, 1, 75–108.Google Scholar
  5. Aranburu, A., Arriolabengoa, M., Iriarte, E., Giralt, S., Yusta, I., Martínez-Pillado, V., et al. (2015). Karst landscape evolution in the littoral area of the Bay of Biscay (north Iberian Peninsula). Quaternary International, 364, 217–230.CrossRefGoogle Scholar
  6. Audra, P., Bigot, J.-Y., & Mocochain, L. (2002). Hypogenic caves in Provence (France). Specific features and sediments. Acta Carsologica, 31, 33–50.Google Scholar
  7. Bakalowicz, M. J., Ford, D. C., Miller, T. E., Palmer, A. N., & Palmer, M. V. (1987). Thermal genesis of dissolution caves in the Black Hills, South Dakota. Geological Society of America Bulletin, 99, 729–738.CrossRefGoogle Scholar
  8. Ballesteros, D., Jiménez-Sánchez, M., Giralt, S., García-Sansegundo, J., & Meléndez-Asensio, M. (2015). A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain). Geomorphology, 247, 35–54.CrossRefGoogle Scholar
  9. Bartolomé, M., Sancho, C., Moreno, A., Oliva-Urcia, B., Belmonte, A., Bastida, J., et al. (2015). Upper Pleistocene interstratal piping-cave speleogenesis: The Seso Cave System (Central Pyrenees, Northern Spain). Geomorphology, 228, 335–344.CrossRefGoogle Scholar
  10. Caddeo, G. A., Railsback, L. B., De Waele, J., & Frau, F. (2015). Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation. Sedimentary Geology, 318, 130–141.CrossRefGoogle Scholar
  11. Calaforra, J., & Berrocal, J.A. (2008). El Karst de Andalucía, Geoespeleología, Bioespeleología y Presencia Humana. Consejería de Medio Ambiente de la Junta de Andalucía. Sevilla.Google Scholar
  12. Canérot, J. (1982). Ibérica central-Maestrazgo. In A. García (Ed.), El Cretácico de España (pp. 273–344). Madrid: Universidad Complutense de Madrid.Google Scholar
  13. Cardozo, N., & Allmendinger, R. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205.CrossRefGoogle Scholar
  14. Castellano, L., Fernández, M., García, F., Gil, L., Gordillo, J., Mallén, D., Porcel, E., Royo, J. (2015). Cavidades de Teruel. 25 cuevas y simas de la provincia. Centro de Estudios Espeleológicos Turolenses, Zaragoza.Google Scholar
  15. Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., et al. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82–91.CrossRefGoogle Scholar
  16. Dodero, A., Bartolomé, M., Sancho, C., Moreno, A., Oliva-Urcia, B., Meléndez, A., et al. (2015). Incisión fluvial a partir del conjunto multinivel de cuevas de La Galiana (Parque Natural del río Lobos, Soria). Geogaceta, 58, 111–114.Google Scholar
  17. Dublyansky, Y. (2012). Hydrothermal caves. Encyclopedia of caves. New York: Elsevier.Google Scholar
  18. Dublyansky, Y. (2013). Karstification of geothermal waters. In J. Schroder & A. Frumkin (Eds.), Treatise of Geomorphology (pp. 57–71). San Diego: Academic Press.CrossRefGoogle Scholar
  19. Durán, J. J., Grün, R., & Ford, D. C. (1993). Dataciones geocronológicas absolutas (métodos ESR y Series de Uranio) en la Cueva de Nerja y su entorno. Implicaciones evolutivas, paleoclimáticas y neosismotectónicas. Trabajos sobre la Cueva de Nerja, 3, 233–248.Google Scholar
  20. Fairchild, I., Smith, C., Baker, A., Fuller, L., Spötl, C., Mattey, D., et al. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75, 105–153.CrossRefGoogle Scholar
  21. Ford, D. C., & Williams, P. (2007). Karst hydrogeology and geomorphology. New York: Wiley.CrossRefGoogle Scholar
  22. Ford, T., & Pedley, H. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41, 117–175.CrossRefGoogle Scholar
  23. Forti, P., Galdenzi, S., & Sarbu, S. M. (2002). The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Continental Shelf Research, 22, 2373–2386.CrossRefGoogle Scholar
  24. Frisia, S. (2015). Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. International Journal of Speleology, 44, 1–16.Google Scholar
  25. Frisia, S., & Borsato, A. (2010). Karst. In A. M. Alonso-Zarza & L. H. Tanner (Eds.), Carbonates in continental settings. Facies, environments and processes. Developments in sedimentology (Vol. 61, pp. 269–318). Amsterdam: Elsevier.CrossRefGoogle Scholar
  26. Frisia, S., Borsato, A., Fairchild, I. J., & McDermott, F. (2000). Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and Southwestern Ireland. Journal of Sedimentary Research, 70, 1183–1196.CrossRefGoogle Scholar
  27. Gázquez, F., Calaforra, J.-M., Forti, P., De Waele, J., & Sanna, L. (2015). The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain). Geomorphology, 229, 100–111.CrossRefGoogle Scholar
  28. Gázquez, F., Calaforra, J.M., Ros, A., Llamusí, J., Sánchez, J. (2016). Hypogenic morphologies and speleothems in caves in the Murcia Region, southeastern Spain. In Chavez, T., Reehling, P. (Eds.), Proceedings of deepkarst 2016: Origins, resources, and management of hypogene karst. National cave and karst research institute, Carlsbad, NM, pp. 53–60.Google Scholar
  29. Gázquez, F., Calaforra, J. M., Rodríguez-Estrella, T., Ros, A., Llamusí, J. L., & Sánchez, J. (2017). Evidence for regional hypogene speleogenesis in Murcia (SE Spain). In A. Klimchouk, A. Palmer, J. De Waele, A. S. Auler, & P. Audra (Eds.), Hypogene karst regions and caves of the world (pp. 85–97). New York: Springer.CrossRefGoogle Scholar
  30. Gázquez, F., Columbu, A., De Waele, J., Breitenbach, S., Huang, C., Shen, C., et al. (2018). Quantification of paleo-aquifer changes using clumped isotopes in subaqueous carbonate speleothems. Chemical Geology, 493, 246–257.CrossRefGoogle Scholar
  31. Giachetta, E., Molin, P., Scotti, V. N., & Faccenna, C. (2015). Plio-Quaternary uplift of the Iberian Chain (central–eastern Spain) from landscape evolution experiments and river profile modeling. Geomorphology, 246, 48–67.CrossRefGoogle Scholar
  32. Ginés, J., Fornós, J. J., Gràcia, F., Merino, A., Onac, B. P., & Ginés, A. (2017). Hypogene imprints in coastal karst caves from Mallorca Island (Western Mediterranean): Morphological features and speleogenetic approach. In A. Klimchouk, N. A. Palmer, J. De Waele, S. A. Auler, & P. Audra (Eds.), Hypogene karst regions and caves of the world (pp. 99–112). Cham: Springer International Publishing.CrossRefGoogle Scholar
  33. Gisbert, M., & Carvajal, S. (1993). Cavidades de Aragón. Zaragoza: Federación Aragonesa de Espeleología.Google Scholar
  34. Gonzalez, L. A., & Lohmann, K. C. (1988). Controls on mineralogy and composition of spelean carbonates. In N. P. James & P. W. Choquette (Eds.), Paleokarst (pp. 81–101). New York: Springer-Verlag.CrossRefGoogle Scholar
  35. Gràcia, F., Ginés, J., Pons, G.X., Ginard, A., Vicens, D. (Eds.) (2011). El carst: Patrimoni natural de les Illes Balears, Endins, 35/Mon. Soc. Hist. Nat. Balears, 17. ed. Palma de Mallorca.Google Scholar
  36. Gradziński, M., Hercman, H., Kicińska, D., Pura, D., & Urban, J. (2011). Ascending speleogenesis of Sokola Hill: A step towards a speleogenetic model of the Polish Jura. Acta Geologica Polonica, 61, 341–365.Google Scholar
  37. Guimerà, J. (1988). Estudi structural de l’enllaç entre la Serralada Ibérica i la Serralada Costanera Catalana (Tesis doctoral). Universidad de Zaragoza.Google Scholar
  38. Gutiérrez, F., Gutiérrez, M., Gracia, F. J., McCalpin, J. P., Lucha, P., & Guerrero, J. (2008). Plio-quaternary extensional seismotectonics and drainage network development in the central sector of the Iberian Chain (NE Spain). Geomorphology, 102, 21–42.CrossRefGoogle Scholar
  39. Gutiérrez, M., & Peña, J. L. (1994). Cordillera Ibérica. In M. Gutiérrez (Ed.), Geomorfología de España (pp. 251–286). Madrid: Editorial Rueda.Google Scholar
  40. Jones, B. (2010). The preferential association of dolomite with microbes in stalactites from Cayman Brac, British West Indies. Sedimentary Geology, 226, 94–109.CrossRefGoogle Scholar
  41. Klimchouk, A. (2009). Morphogenesis of hypogenic caves. Geomorphology, 106, 100–117.CrossRefGoogle Scholar
  42. Klimchouk, A. (2013). Hypogene Speleogenesis. In J. Schroder & A. Frumkin (Eds.), Treatise on geomorphology (pp. 220–240). San Diego: Academic Press.CrossRefGoogle Scholar
  43. Klimchouk, A. (2017). Types and settings of hypogene karst. In A. Klimchouk, A. N. Palmer, J. De Waele, A. S. Auler, & P. H. Audra (Eds.), Hypogene karst regions and caves of the world (pp. 1–39). New York: Springer.CrossRefGoogle Scholar
  44. Klimchouk, A., Ford, D., Palmer, A., & Dreybrodt, W. (Eds.). (2000). Speleogenesis. Evolution of karst aquifers. Huntsville: National Speleological Society.Google Scholar
  45. Leél-Őssy, S., Szanyi, G., & Surányi, G. (2011). Minerals and speleothems of the József-hegy Cave (Budapest, Hungary). International Journal of Speleology, 40, 191–203.CrossRefGoogle Scholar
  46. Liesa, C. (1998). Estructura y cinemática del arco de cabalgamientos Portalrubio-Vandellós en el sector de Castellote (Teruel). Grupo de Estudios Masinos, 18, 9–37.Google Scholar
  47. Moreno, A., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Cacho, I., Stoll, H., et al. (2017). New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia. Quaternary Research, 88, 223–233.CrossRefGoogle Scholar
  48. O’Neil, J. R., & Epstein, S. (1966). Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science, 152, 198–201.CrossRefGoogle Scholar
  49. Ortega, A. I., Benito-Calvo, A., Pérez-González, A., Martín-Merino, M. A., Pérez-Martínez, R., Parés, J. M., et al. (2013). Evolution of multilevel caves in the Sierra de Atapuerca (Burgos, Spain) and its relation to human occupation. Geomorphology, 196, 122–137.CrossRefGoogle Scholar
  50. Orvošová, M., Hurai, V., Simon, K., & Wiegerová, V. (2004). Fluid inclusion and stable isotopic evidence for early hydrothermal karstification in vadose caves of the Nízke Tatry Mountains (Western Carpathians). Geologica Carpathica, 55, 421–429.Google Scholar
  51. Pailhé, P. (1984). La Chaîne Ibérique Orientale. Étude géomorphologique (Thèse de Doctorat d’Etat). Université Bordeaux III.Google Scholar
  52. Palmer, A. (1991). Origin and morphology of limestone caves. Geological Society of America Bulletin, 103(1), 1–21.CrossRefGoogle Scholar
  53. Palmer, A. N. (2011). Distinction between epigenic and hypogenic maze caves. Geomorphology, 134, 9–22.CrossRefGoogle Scholar
  54. Peña, J.L., Gutiérre Elorza, M., Jesus Ibáñez Marcellan, M., Victoria Lozano Tena, M., Vidal, J., Sánchez Fabre, M., Luis Simón Gomez, J., Soriano, M., Miguel Yetano Ruiz, L. (1984). Geomorfología de la Provincia de Teruel. Instituto de Estudios Turolenses.Google Scholar
  55. Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Cacho, I., et al. (2017). Abrupt climate changes during Termination III in Southern Europe. Proceedings of the National Academy of Sciences, 114, 10047–10052.CrossRefGoogle Scholar
  56. Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Osácar, M. C., et al. (2018). Transference of isotopic signal from rainfall to dripwaters and farmed calcite in Mediterranean semi-arid karst. Geochimica et Cosmochimica Acta, 243, 66–98.CrossRefGoogle Scholar
  57. Sánchez, J. Á., Coloma López, P., & Perez-Garcia, A. (2004). Evaluation of geothermal flow at the springs in Aragón (Spain), and its relation to geologic structure. Hydrogeology Journal, 12, 601–609.CrossRefGoogle Scholar
  58. Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo, G., Lozano, M. V., Peña-Monné, J. L., et al. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research, 84, 398–414.CrossRefGoogle Scholar
  59. Scotti, V. N., Molin, P., Faccenna, C., Soligo, M., & Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206, 37–57.CrossRefGoogle Scholar
  60. Sierra, P. (2016). Superficies de erosión y evolución morfotectónica de un sector de la Cordillera Ibérica oriental (Trabajo Fin de Grado). Zaragoza: Universidad de Zaragoza.Google Scholar
  61. Simón, J. L. (1984). Compresión y distensión alpinas en la Cadena Ibérica oriental. Teruel: Instituto de Estudios Turolenses.Google Scholar
  62. Simón, J. L., Liesa, C. L., & Arlegui, L. E. (2002). Alpine tectonics I. The Iberian Ranges. In W. Gibbons & M. T. Moreno (Eds.), The geology of Spain (pp. 385–397). London: Geological Society.Google Scholar
  63. Sopeña, A. (2004). Cordilleras Ibérica y Costero Catalana. In Vera, J.A. (Ed.), Geología de España (pp. 467–470). Madrid.Google Scholar
  64. Spötl, C., Dublyansky, Y., Meyer, M., & Mangini, A. (2009). Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: A case study from an alpine cave, Entrische Kirche, Austria. International Journal of Earth Sciences, 98, 665–676.CrossRefGoogle Scholar
  65. Spötl, C., Fohlmeister, J., Cheng, H., & Boch, R. (2016). Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria. Chemical Geology, 435, 60–70.CrossRefGoogle Scholar
  66. Vanghi, V., Frisia, S., & Borsato, A. (2017). Genesis and microstratigraphy of calcite coralloids analysed by high resolution imaging and petrography. Sedimentary Geology, 359, 16–28.CrossRefGoogle Scholar
  67. White, W. (1988). Geomorphology and hydrology of karst terrains. Oxford: Oxford University Press.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Department of Geoenvironmental Processes and Global ChangePyrenean Institute of Ecology-CSICSaragossaSpain
  2. 2.Earth Sciences DepartmentUniversity of ZaragozaSaragossaSpain
  3. 3.Department of Biology and GeologyUniversidad de AlmeríaAlmeríaSpain
  4. 4.Geology Department. Museo Nacional de Ciencias NaturalesMadridSpain
  5. 5.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina
  6. 6.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina

Personalised recommendations