Journal of Iberian Geology

, Volume 45, Issue 3, pp 443–469 | Cite as

The granite-hosted Variscan gold deposit from Santo António mine in the Iberian Massif (Penedono, NW Portugal): constraints from mineral chemistry, fluid inclusions, sulfur and noble gases isotopes

  • Ana M. R. Neiva
  • António MouraEmail author
  • Carlos A. Leal Gomes
  • Manuel Francisco Pereira
  • Fernando Corfu
Research Paper


The study area is located in the Central Iberian Zone, a major tectonic unit of the Iberian Massif (Variscan belt). In this region the basement is composed of Cambrian-Ordovician sedimentary and minor volcanic rocks that underwent deformation and metamorphism during the Carboniferous. These metamorphic rocks host ca. 331–308 Ma granitic plutons emplaced during the D2 extensional and D3–D4 contractional deformation phases. The gold-bearing quartz veins from the Santo António mine (Penedono region) occur in granite formed at 310.1 ± 1.1 Ma and post-dated the peak of metamorphism. Gold–silver alloy is included in quartz, but mainly occurs in spaces between grains or micro-fractures within arsenopyrite of all three generations and less in pyrite. Late sulphides and sulphosalts were deposited along fractures mainly in arsenopyrite, and locally surrounding the gold–silver alloy grains. Ferberite, scheelite and stolzite replace arsenopyrite. The abundant aqueous carbonic fluids and the occurrence of a low-salinity fluid and their minimum possible entrapment temperature of 360–380 °C suggest that this gold-forming event began during the waning stages of the Variscan orogeny. The mean δ34S values of arsenopyrite and pyrite are − 4.7‰ and − 3.8‰, respectively. He–Ar–Ne isotopic data suggest a crustal origin. The ascent of the granite magma has provided the heat for remobilization of gold, other metals and metalloids from the metamorphic rocks. This gold-arsenopyrite deposit has thus similar characteristics as other selected gold-arsenopyrite deposits from the Iberian Massif, but it contains tungstates.


Gold Mineralogy Geochemistry Fluid inclusions S, He, Ar, Ne isotopes Variscan orogeny 


El área de estudio está ubicada en la Zona Centroibérica, una importante unidad tectónica del Macizo Ibérico (cinturón varisco). En esta región el basamento está compuesto por rocas sedimentarias y volcánicas del Cámbrico-Ordovícico tectonizadas y metamorfizadas durante el Carbonífero. Estas rocas metamórficas sirven como caja de los plutones graníticos datados en torno a 331–308 Ma y que fueron emplazados durante la fase de deformación extensional D2 y las fases de deformación contraccional D3 y D4. Las venas de cuarzo ricas en oro de la mina de Santo António (región de Penedono) que aparecen en un granito datado a los 310.1 ± 1.1 Ma son posteriores al pico metamórfico regional. La aleación de oro y plata se incluye en el cuarzo, pero se produce principalmente en los espacios entre granos o micro-fracturas dentro de arsenopirita de las tres generaciones y menos en pirita. Los sulfuros y sulfuros tardíos se depositaron a lo largo de las fracturas principalmente en arsenopirita, y alrededor de los granos de aleación de oro y plata. Ferberita, scheelita y la estolzita sustituyen a la arsenopirita. Los abundantes líquidos acuosos carbónicos y la presencia de un fluido de baja salinidad y su posible temperatura de atrapamiento mínima en torno de 360-380 ºC sugieren que este evento de formación de oro comenzó durante las etapas finales de la orogenia varisca. Los valores medios de S de arsenopirita y pirita son − 4.7 ‰ y − 3.8 ‰, respectivamente. Los datos isotópicos de He–Ar–Ne sugieren que en el origen de los fluidos mineralizados participa la corteza continental. El ascenso del magma granítico ha provisto el calor para la movilización del oro, otros metales y metaloides desde las rocas metamórficas. Este depósito de oroarsenopirita tiene así características similares a otros yaciamientos con arsenopirita y oro del Macizo Ibérico, pero sin embargo contienen tungstates.

Palabras clave

Oro Mineralogía Geoquímica Inclusiones fluidas Isotopos de S He Ar y Ne Orogenia Varisca 



This research was financially supported by Fundação para a Ciência e Tecnologia through the projects GOLD-Granites, Orogenesis, Long-term strain/stress and Deposition of ore metals—PTDC/GEO-GEO/2446/2012: COMPETE: FCOMP-01-0124-FEDER-029192 and UID/GEO/04035/2013. Thanks are due to Colt Resources for having allowed sampling in the Santo António gold mine and Dr. Pedro Keil for having helped in this field work, Profs. Martim Chichorro, José Brandão Silva and Rubén Díez-Fernández for constructive discussions in the field, Dr. J.M. Farinha Ramos for helpful information, Prof. R. Machado Leite for the use of electron microprobe at LNEG, Eng. Fernanda Guimarães for having helped to obtain analyses with this equipment, Dr. Manuel Moreira for the He–Ne–Ar isotopic data, Prof. R.A. Creaser for the Re content of pyrite and Dr. Armanda Dória for having helped with the Raman analysis. Thanks are also due to the editor and reviewers for their comments to help improve this manuscript.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Supplementary material

41513_2019_103_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
41513_2019_103_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)


  1. Alcock, J. E., Martínez Catalán, J. R., Rubio Pascual, F. J., Montes, A. D., Díez Fernández, R., Gómez Barreiro, J., et al. (2015). 2-D thermal modeling of HT-LP metamorphism in NW and Central Iberia: Implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution. Tectonophysics, 657, 21–37.Google Scholar
  2. Amcoff, O. (1976). The solubility of silver and antimony in galena. Neues Jahrbuch für Mineralogie, 6, 247–261.Google Scholar
  3. Arias, D., Corretgé, L. G., Villa, L., Gallastegui, G., Suárez, O., & Cuesta, A. (1997). A sulphur isotopic study of the Navia gold belt (Spain). Journal of Geochemical Exploration, 59, 1–10.Google Scholar
  4. Bakker, R. J. (1999). Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system. Chemical Geology, 154, 225–236.Google Scholar
  5. Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chemical Geology, 194, 3–23.Google Scholar
  6. Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683–684.Google Scholar
  7. Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2014). Fluid inclusions in hydrothermal ore deposits. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., Vol. 13, pp. 119–142). Oxford: Elsevier.Google Scholar
  8. Boiron, M. C., Barakat, A., Cathekineau, M., Banks, D. A., Durivosa, J., & Moravek, P. (2001). Geometry and P-V-T-X conditions of microfissural ore fluid migration: The Mokrsko gold deposit (Bohemia). Chemical Geology, 173, 207–225.Google Scholar
  9. Boiron, M. C., Cathelineau, M., Banks, D. A., Fourcade, S., & Vallance, J. (2003). Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: Consequences of gold deposition. Chemical Geology, 194, 119–141.Google Scholar
  10. Boiron, M.-C., Cathelineau, M., Banks, D. A., Yardley, B. W. D., Noronha, F., & Miller, M. F. (1996). P-T-X conditions of late Hercynian fluid penetration and the origin of granite-hosted gold quartz veins in northwestern Iberia: A multidisciplinary study of fluid inclusions and their chemistry. Geochimica et Cosmochimica Acta, 60, 43–57.Google Scholar
  11. Boiron, M. C., Essaraj, S., Sellier, E., Cathelineau, M., Lespinasse, M., & Poty, B. (1992). Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochimica et Cosmochimica Acta, 56, 175–185.Google Scholar
  12. Bowers, T. S., & Helgeson, H. C. (1983). Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geological systems: Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47, 1247–1275.Google Scholar
  13. Burrows, D. R., & Spooner, E. T. C. (1989). Relationships between Archean gold vein-shear zone mineralisation and igneous intrusions in the Val d’Or and Timmins area, Abitibi Subprovince, Canada. Economic Geology Monographs, 6, 424–444.Google Scholar
  14. Cathelineau, M., Boiron, M.C., Palomero, F.G., Urbano, R., Florido, P., Pereira, E.S., et al. (1993). Multidisciplinary studies of Au-vein formation. Application to the western part of the Hesperian massif (Spain–Portugal). Final report, EEC project MA2M-CT90-0033.Google Scholar
  15. Cave, B. J., Pitcairn, I. K., Craw, D., Large, R. R., Thompson, J. M., & Johnson, S. C. (2017). A metamorphic mineral source for tungsten in the turbidite-hosted orogenic gold deposits of the Otago Schist, New Zealand. Mineralium Deposita, 52, 515–537.Google Scholar
  16. Chang, L. L. Y., & Hoda, S. H. (1977). Phase relations in the system PbS–Cu2S–Bi2S3 and the stability of galenobismutite. American Mineralogist, 62, 346–350.Google Scholar
  17. Cook, N. J., Ciobanu, C. L., Meria, D., Silcock, D., & Wade, B. (2013). Arasenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Economic Geology, 108, 1273–1283.Google Scholar
  18. Corfu, F. (2004). U–Pb age, setting and tectonic significance of the anorthosite–mangerite–charnockite–granite suite, Lofoten–Vesterälen, Norway. Journal of Petrology, 56, 2081–2097.Google Scholar
  19. Cotelo Neiva, J. M., & Neiva, A. M. R. (1990). The gold area of Jales (northern Portugal). Terra Nova, 2, 243–254.Google Scholar
  20. Couto, H., Roger, G., & Borges, F. S. (2007). Late Paleozoic orogenic gold-antimony deposits from the Dúrico-Beirã area (North Portugal): Relation with hidden granite apexes. In C. J. Andrew et al (Eds.), Proc. ninth Biennal meeting of the society for geology applied to mineral deposits, Ireland (Vol. 1, pp. 609–615). Cambridge: Cambridge Mineral Resources.Google Scholar
  21. Couto, H., Roger, G., Moëlo, Y., & Bril, H. (1990). Le district à antimoine-or Dúrico Beirão (Portugal): Évolution paragénétique et géochimique: Implications métallogéniques. Mineralium Deposita, 25(Suppl), 569–581.Google Scholar
  22. Craig, J. R., Vokes, F. M., & Solberg, T. N. (1993). Pyrite: Physical and chemical textures. Mineralium Deposita, 34, 82–101.Google Scholar
  23. D’Angelico, A. J., Jenkin, G. R. T., & James, D. (2016). Orogenic gold mineralization in northwest Iberia, Portugal: Role of meta-sediment source as a control on location, geochemistry and mineralogy. Applied Earth Science, 125, 73–74.Google Scholar
  24. Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. J., Gutiérrez-Alonso, G., Farias, P., et al. (1997). Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277, 307–337.Google Scholar
  25. Davis, D. W., Blackburn, C. E., & Krogh, T. E. (1982). Zircon U–Pb ages from Wabigoon, Manitou Lakes region, Wabigoon subprovince, northwest Ontario. Canadian Journal of Earth Sciences, 19, 254–266.Google Scholar
  26. Dee, S. J., & Roberts, S. (1993). Late-Kinematic gold mineralization during regional uplift and the role of nitrogen: An example from the La Codosera area, W. Spain. Mineralogical Magazine, 57, 437–450.Google Scholar
  27. Dias, G., Leterrier, J., Mendes, A., Simões, P. P., & Bertrand, J. M. (1998). U-Pb zircon and monazite geochronology of post-collisional Hercynian granitoids from the Central Iberian Zone (Northern Portugal). Lithos, 45, 349–369.Google Scholar
  28. Díez Balda, M. A., Martínez Catalán, J. R., & Ayarza, P. (1995). Syn-collisional extensional collapse parallel to the orogenic trend in a domain of steep tectonics—The Salamanca detachment zone (Central Iberian Zone, Spain). Journal of Structural Geology, 17, 163–182.Google Scholar
  29. Díez Fernández, R., & Arenas, R. (2015). The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia. Tectonophysics, 654, 96–100.Google Scholar
  30. Díez Fernández, R., Gómez Barreiro, J., Martínez Catalán, J. R., & Ayarza, P. (2013). Crustal thickening and attenuation as revealed by regional fold interference patterns: Ciudad Rodrigo basement area (Salamanca, Spain). Journal of Structural Geology, 46, 115–128.Google Scholar
  31. Díez Fernández, R., & Pereira, M. F. (2016). Extensional orogenic collapse captured by strike-slip tectonics: Constrains from structural geology and U–Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif). Tectonophysics, 691, 290–310.Google Scholar
  32. Díez Fernández, R., & Pereira, M. F. (2017). Strike-slip shear zones of the Iberian Massif: Are they coeval? Lithosphere, 9, 726–744. Scholar
  33. Escuder Viruete, J. E., Arenas, R., & Martínez Catalán, J. R. (1994). Tectonothermal evolution associated with Variscan crustal extension in the Tormes gneiss dome (NW Salamanca, Iberian massif, Spain). Tectonophysics, 23, 117–138.Google Scholar
  34. Escuder Viruete, J., Hernáiz Huerta, P. P., Valverde-Vaquero, P., Rodríguez Fernández, R., & Dunning, G. (1998). Variscan syncollisional extension in the Iberian Massif: Structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics, 290, 87–109.Google Scholar
  35. Ferreira, N., & Sousa, M. B. (1994). Notícia explicativa da folha 14-B da Carta Geológica de Portugal (scale 1/50000; Moimenta da Beira). Serviços Geológicos de Portugal. Folha 14-B, 53 pGoogle Scholar
  36. Fischer, N. H. (1945). The fineness of gold with special reference to the Morobe goldfield, New Guinea. Economic Geology, 40, 449–495.Google Scholar
  37. Fuertes-Fuente, M., Cepedal, A., Lima, A., Dória, A., Ribeiro, M. J., & Guedes, A. (2016). The Au-bearing vein system of the Limarinho deposit (northern Portugal): Genetic constraints from Bi-chalcogenides and Bi–Pb–Ag sulfosalts, fluid inclusions and stable isotopes. Ore Geology Reviews, 72, 213–231.Google Scholar
  38. Gamond, J. F., & Giraud, A. (1982). Identification des zones de faille á l’aide des associations de fractures de second ordre. Bulletin de la Société Géologique de France, 24, 755–762.Google Scholar
  39. Garofalo, P. S., & Ridley, J. R. (2014). Gold-transporting hydrothermal fluids in the Earth’s crust: An introduction. In P. S. Garofalo & J. R. Riddley (Eds.), Gold-transportation hydrothermal fluids in the Earth’s crust (Vol. 402, pp. 1–7). London: The Geological Society Special Publications.Google Scholar
  40. Gilfillan, S., Ballentine, C., Holland, G., Blagburn, D., Sherwood, B., Lollar, B., et al. (2008). The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochimica et Cosmochimica Acta, 72, 1174–1198.Google Scholar
  41. Goldfarb, R. J., Baker, T., Dube, B., Gorves, D. L., Hart, C. J. R., & Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology, 100th Anniversary Volume, 407–450.Google Scholar
  42. Goldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: Common or evolving fluid and neutral sources through time. Lithos, 233, 2–26.Google Scholar
  43. Goldfarb, R. J., Groves, D. I., & Gardoll, S. (2001). Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18, 1–75.Google Scholar
  44. Goldfarb, R. J., Newberry, R. J., Pickthorn, W. J., & Gent, C. A. (1991). Oxygen, hydrogen, and sulfur isotope studies in the Juneau gold belt, southeastern Alaska: Constraints on the origin of hydrothermal fluids. Economic Geology, 86, 66–80.Google Scholar
  45. Gómez-Fernández, F., Vindel, E., Martín-Crespo, T., Sánchez, V., González Clavijo, E., & Matías, R. (2012). The Llamas de Cabrera gold district, a new discovery in the Variscan basement of northwest Spain: A fluid inclusion and stable isotope study. Ore Geology Reviews, 46, 68–82.Google Scholar
  46. Graupner, T., Niedermann, S., Kempe, U., Klemd, R., & Bechtel, A. (2006). Origin of ore fluids in the Muruntau gold system: Constraints from noble gas, carbon isotope and halogen data. Geochimica et Cosmochimica Acta, 70(21), 5356–5370.Google Scholar
  47. Graupner, T., Niedermann, S., Rhede, D., Kempe, U., Seltmann, R., Williams, C. T., et al. (2010). Multiple sources for mineralizing fluids in the Charmitan gold(-tungsten) mineralization (Uzbekistan). Mineralium Deposita, 45, 667–682.Google Scholar
  48. Groves, D. I., Gordfarb, R. J., Knox-Robinson, C. M., Ojala, J., Gardoll, S., Yun, G. Y., et al. (2000). Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geology Reviews, 17, 1–38.Google Scholar
  49. Gunter, F. (1986). Principles of isotope geology (2nd ed.). New York: Wiley.Google Scholar
  50. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review, Section C Nuclear Physics, 4, 1889–1906.Google Scholar
  51. Kendrick, M. A., Burgess, R., Pattrick, R. A. D., & Turner, G. (2001). Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochimica et Cosmochimica Acta, 65, 2651–2668.Google Scholar
  52. Kendrick, M. A., & Burnard, P. (2013). Noble gases and halogens in fluid inclusions: A journey through the Earth’s crust. In P. Burnard (Ed.), The noble gases as geochemical tracers, advances in isotope geochemistry. Berlin: Springer.Google Scholar
  53. Kendrick, M. A., Honda, M., Walshe, J., & Petersen, K. (2011). Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: Constraints from noble gases and halogens. Precambrian Research, 189, 313–327.Google Scholar
  54. Kim, K. H., Lee, S., Nagao, K., Sumino, H., Yang, K., & Lee, J. I. (2012). He–Ar–H–O isotopic signatures in Au–Ag bearing ore fluids of the Sunshin epithermal gold–silver ore deposits, South Korea. Chemical Geology, 320–321, 128–139.Google Scholar
  55. Knight, C. L., & Bodnar, R. J. (1989). Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl–H2O solutions. Geochimica et Cosmochimica Acta, 53, 3–8.Google Scholar
  56. Kretschmar, U., & Scott, S. D. (1976). Phase relations involving arsenopyrite in the system Fe–As–S and their application. Canadian Mineralogist, 14, 364–386.Google Scholar
  57. Krogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, 37, 485–494.Google Scholar
  58. Krogh, T. E. (1982). Improve accuracy of U–Pb zircon ages by creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637–649.Google Scholar
  59. Lang, J. R., & Baker, T. (2001). Intrusion-related gold systems: The present level of understanding. Mineralium Deposita, 36, 477–489.Google Scholar
  60. Lawrence, D. M., Treloar, P. J., Rankin, A., Boyce, A., & Harbidge, P. (2013a). A fluid inclusion and stable isotope study at the Loulo Mining District, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits. Economic Geology, 108, 229–257.Google Scholar
  61. Lawrence, D. M., Treloar, P. J., Rankin, A. H., Harbidge, P., & Holliday, J. (2013b). The geology and mineralogy of the Loulo Mining District, Mali, West Africa: Evidence for two distinct styles of orogenic gold mineralization. Economic Geology, 108, 199–227.Google Scholar
  62. Leal Gomes, C. (1994). Estudo estrutural e paragenético de um sistema pegmatoide granítico. – O campo aplito-pegmatítico de Arga – Minho (Portugal). Unpublished PhD thesis, Univ. Minho, Portugal.Google Scholar
  63. Leal Gomes, C. (1997). Estruturas de deformação Hercínica tardia na transição D3–D4 – evidência e interpretação de marcadores mineralógicos, marcadores litológicos, objectos geométricos simples e critérios cinemáticos – discussão da viabilidade de isolamento de um episódio deformacional D’3 (D3-tardio) na vertente oriental da Serra de Arga – Minho – N de Portugal. “Livro guia da excursão pós-reunião”. In C. Coke (Ed.) PICG 376—XIV Reunião de Geologia do Oeste Peninsular (pp. 97–118).Google Scholar
  64. Leal Gomes, C. (2000a). Análise comparativa das paragéneses auríferas nos índices, Dacotim, Fonte do Coxo, Bouções e Turgueira – área de Penedono – relatório inédito para Rio Narcea Gold Mines – filial portuguesa, Penedono.Google Scholar
  65. Leal Gomes, C. (2000b). Análise paragenética e tipologia das expressões auríferas do depósito de Santo António-Vieiros (Penedono) – relatório inédito para Rio Narcea Gold Mines – filial portuguesa, Penedono.Google Scholar
  66. Leal Gomes, C., & Castelo Branco, J. M. (2003). Tipologia do particulado aurífero tardio nas mineralizações de Penedono (Viseu, Portugal). In IV Congresso Ibérico de Geoquímica e XIII Semana de Geoquímica, Livro de Resumos (pp. 190–192).Google Scholar
  67. Leal Gomes, C., & Gaspar, O. C. (1992). Mineralizações filonianas associadas a cisalhamentos pós-pegmatóides do campo aplito-pegmatítico de Arga – Minho. Comunicações dos Serviços Geológicos de Portugal, 78, 31–47.Google Scholar
  68. Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee, J. B., et al. (2006). A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, 70, 4507–4512.Google Scholar
  69. Liu, C., Liu, J., Carranza, E. J. M., Yang, L., Wang, J., Zhai, D., et al. (2016). Geological and geochemical constraints on the genesis of the Huachanggou gold deposit, western Qinling region, central China. Ore Geology Reviews, 73, 354–373.Google Scholar
  70. Llana-Fúnez, S., & Marcos, A. (2001). The Malpica–Lamego Line: A major crustal scale shear zone in the Variscan belt of Iberian. Journal of Structural Geology, 23, 1015–1030.Google Scholar
  71. López-Moro, F. J., López-Plaza, M., Gutíerrez-Alonso, G., Fernández-Suárez, J., López-Carmona, A., Hofmann, M., et al. (2017). Crustal melting and recycling: Geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U–Pb LA–ICP–MS study. International Journal of Earth Sciences. Scholar
  72. Ludwig, K. R. (2003). Users manual for Isoplot 3.00 (Vol. 4). Berkeley: Geochronology Center Special Publications.Google Scholar
  73. Marcoux, E., Nerci, K., Branquet, Y., Ramboz, C., Ruffet, G., Peucat, J.-J., et al. (2015). Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco. Journal of African Earth Sciences, 107, 65–88.Google Scholar
  74. Martínez Catalán, J. R., Arenas, R., Abati, J., Sánchez Martínez, S., Díaz García, F., Fernández-Suárez, J., et al. (2009). A rootless suture and the loss of the roots of a mountain chain: The 1159 Variscan belt of NW Iberia. Comptes Rendus Geoscience, 341, 114–126.Google Scholar
  75. Martínez Catalán, J. R., Arenas, R., Díaz Garcia, F., & Abati, J. (1997). Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 25, 1103–1106.Google Scholar
  76. Martínez Catalán, J. R., Rubio Pascual, F. J., Díez, Montes A., Díez, Fernández R., Gómez, Barreiro J., Dias da Silva, Í., et al. (2014). The late Variscan HT/LP metamorphic event in NW and Central Iberia: Relationships to crustal thickening, extension, orocline development and crustal evolution. Geological Society, London, Special Publications, 405, 225–247.Google Scholar
  77. Mikucki, E. J. (1998). Hydrothermal transport and depositional processes in Archean lode-gold systems: A review. Ore Geology Reviews, 13, 307–321.Google Scholar
  78. Morey, A. A., Tomkins, A. G., Bierlein, F. G., Weinberg, R. F., & Davidson, G. J. (2008). Bimodal distribution of gold in pyrite and arsenopyrite: Example from the Archean Boorara and Bardoc shear zones, Yilgarn craton, Western Australia. Economic Geology, 103, 599–614.Google Scholar
  79. Murphy, P. J., & Roberts, S. (1997). Evolution of a metamorphic fluid and its role in lode gold mineralization in the Central Iberian Zone. Mineralium Deposita, 32, 459–474.Google Scholar
  80. Neiva, A. M. R. (1994). Gold-quartz veins at Gralheira, northern Portugal: Mineralogical and geochemical characteristics. Transactions of the Institution of Mining and Metallurgy. Section B. Applied Earth Science, 103, B188–B196.Google Scholar
  81. Neiva, A. M. R., András, P., & Ramos, J. M. F. (2008). Antimony quartz and antimony-gold quartz veins from northern Portugal. Ore Geology Reviews, 34, 533–546.Google Scholar
  82. Nogueira, P., & Noronha, F. (1993). A evolução de fluidos hidrotermais associados a mineralizações de (Au–Ag–As) em contexto granítico. Os exemplos de Grovelas e Penedono, norte de Portugal. Mem. nº 3, Univ. Porto, Fac. Ciênc., Mus. Lab. Mineral. Geol. In F. Noronha, M. Marques & P. Nogueira (Eds.), IX Semana de Geoquímica e II Cong. Geoquímica dos países de língua portuguesa (pp. 275–278).Google Scholar
  83. Noronha, F., Cathelineau, M., Boiron, M.-C., Banks, D. A., Dória, A., Ribeiro, M. A., et al. (2000). A three stage fluid flow model for Variscan gold metallogenesis in northern Portugal. Journal of Geochemical Exploration, 71, 209–224.Google Scholar
  84. Ohmoto, H., & Goldhaber, M. B. (1997). Sulfur and carbon isotopes. In H. I. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (3rd ed., pp. 517–612). New York: Wiley.Google Scholar
  85. Oliveira, J. T. (1992). Carta Geológica de Portugal, Folha Norte, scale 1/500 000. Serv. Geol. Portugal, Moimenta da Beira, 53 p.Google Scholar
  86. Ortega, L., & Vindel, E. (1995). Evolution of ore forming fluids associated with late Hercynian antimony deposits in central/western Spain: Case study of Maria Rosa and El Juncalón. European Journal of Mineralogy, 7, 655–673.Google Scholar
  87. Ozima, M., & Podosek, F. A. (2002). Noble gas geochemistry. Cambridge: Cambridge University Press.Google Scholar
  88. Pereira, I., Dias, R., Santos, T. B., & Mata, J. (2017). Exhumation of a migmatite complex along a transpessive shear zone: Inferences from the Variscan Juzbado–Penalva do Castelo Shear Zone (Central Iberian Zone). Journal of the Geological Society. Scholar
  89. Pereira, M. F., Díez Fernández, R., Gama, C., Hofmann, M., Gärtner, A., & Linnemann, U. (2018). S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). International Journal of Earth Sciences, 107, 251–267. Scholar
  90. Pettke, T., Frei, R., Kramers, J. D., & Villa, I. M. (1997). Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy). 2. (U + Th)/He and K/Ar in native Au and its fluid inclusions. Chemical Geology, 135, 173–187.Google Scholar
  91. Pitcairn, I. R., Teagle, D. A., Craw, G. R., Olivo, G. R., Kerrich, R., & Brewer, T. S. (2006). Sources of metals and fluids in orogenic gold deposits: Insights from the Otageo and Alpine Schists, New Zealand. Economic Geology, 101, 1525–1546.Google Scholar
  92. Pokrovski, G. S., Akinfiev, N. N., Borisova, A. Y., Zotov, A. V., & Kouzmanov, K. (2014). Gold speciation and transport in geological fluids: Insights from experiments and physical–chemical modelling. In P. S. Garofalo & J. R. Ridley (Eds.), Gold-transporting hydrothermal fluids in the Earth’s crust (Vol. 42, pp. 9–70). London: The Geological Society Special Publications.Google Scholar
  93. Poty, B., Leroy, J., & Jachimowicz, L. (1976). Un novel appareil pour la mesure des températures sous le microscope: L’installation de microthermométrie Chaixmeca. Bulletin de Minéralogie, 99, 182–186.Google Scholar
  94. Prieto, A. C., Guedes, A., Dória, A., Noronha, F., & Jiménez, J. (2012). Quantitative determination of gaseous phase compositions in fluid inclusions by Raman microspectrometry. Spectroscopy Letters, 45, 156–160.Google Scholar
  95. Rauchenstein-Martinek, K., Wagner, T., Wälle, M., & Heinrich, C. A. (2014). Gold concentrations in metamorphic fluids: A LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chemical Geology, 385, 70–83.Google Scholar
  96. Regêncio Macedo, C. A. (1988). Granitoids, Complexo Xisto-Grauváquico e Ordovícico na região entre Trancoso e Pinhel (Portugal Central): Geologia, Petrologia, Geocronologia. Unpublished PhD thesis, Univ. Coimbra, Coimbra, Portugal, p. 430.Google Scholar
  97. Roedder, E. (1984). Fluid inclusions. In Paul H. Ribbe (Ed.), Reviews in mineralogy (Vol. 12). Chantilly: Mineralogical Society of America.Google Scholar
  98. Romberger, S. B. (1986). The solution chemistry of gold applied to the origin of hydrothermal deposits. In L. A. Clark (Ed.), Gold in the western Shield, special volume (pp. 168–186). Montreal: Canadian Institute of Mining and Metallurgy.Google Scholar
  99. Sharp, Z. D., Essene, E. J., & Kelly, W. C. (1985). A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages. Canadian Mineralogist, 23, 517–534.Google Scholar
  100. Shepherd, T. (1981). Temperature-programmable heating-freezing stage for microthermometric analysis of fluid inclusions. Economic Geology, 76, 1244–1247.Google Scholar
  101. Shepherd, T., Rankin, A., & Alderton, D. (1985). A practical guide to fluid inclusions studies. London: Blackie and Son Lda.Google Scholar
  102. Sibson, R. (1973). Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature, 243, 66–68.Google Scholar
  103. Sibson, R. (1983). Continental fault structure and the shallow earthquake source. Journal of the Geological Society of London, 140, 741–767.Google Scholar
  104. Sibson, R. (1987). Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15, 701–704.Google Scholar
  105. Sibson, R. (1990). Faulting and fluid flow. In B. E. Nesbitt (Ed.), Fluids in tectonically active regimes of the continental crust. Short course handbook, 18. Mineral. As. Vancouver (pp. 93–132).Google Scholar
  106. Sibson, R., McM, Moore, & Rankin, A. (1975). Seismic pumping—A hydrothermal fluid transport mechanism. Journal of the Geological Society of London, 131, 653–659.Google Scholar
  107. Silva, A. F., & Ribeiro, M. L. (1991). Carta Geológica de Portugal, scale 1:50 000, Notícia explicativa da Folha 15-A Vila Nova de Foz Côa. Instituto Geológico e Mineiro, 52 p.Google Scholar
  108. Silva, A. F., & Ribeiro, M. L. (1994). Carta Geológica de Portugal, scale 1:50 000, Notícia explicativa da Folha 15-B Freixo de Espada à Cinta. Instituto Geológico e Mineiro, 48 p.Google Scholar
  109. Simmons, S. F., Sawkins, F. J., & Schlutter, D. J. (1987). Mantle derived helium in two Peruvian hydrothermal ore deposits. Nature, 329, 429–432.Google Scholar
  110. Sousa, M. B., & Ramos, J. M. F. (1991). Características geológico-estruturais e químico-mineralógicas das jazidas auríferas da região de Penedono-Tabuaço (Viseu, Portugal). Estudos Notas e Trabalhos, D.G.G.M., 33, 71–96.Google Scholar
  111. Sousa, M. B., & Sequeira, A. J. D. (1989). Notícia explicativa da folha 10-D da Carta Geológica de Portugal (scale 1/50 000; Alijó). Serv. Geol. Portugal, 59 p.Google Scholar
  112. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a low-stage model. Earth and Planetary Science Letters, 34, 207–226.Google Scholar
  113. Stefánsson, A., & Seward, T. M. (2003). Experimental determination of the stability and stoichiometry of sulphide complexes of silver (I) in hydrothermal solutions to 400 °C. Geochimica et Cosmochimica Acta, 67, 1395–1413.Google Scholar
  114. Stefánsson, A., & Seward, T. M. (2004). Gold(I) complexing in aqueous sulphide solutions to 500 °C at 500 bar. Geochimica et Cosmochimica Acta, 68, 4121–4143.Google Scholar
  115. Stuart, F. M., Burnard, P., Taylor, R. P., & Turner, G. (1995). Resolving mantle and crustal contributions to ancient hydrothermal fluid: He–Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochimica et Cosmochimica Acta, 59, 4663–4673.Google Scholar
  116. Sundlab, K., Zachrisson, E., Smeds, S. A., Berglund, S., & Alinder, C. (1984). Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides. Economic Geology, 79, 1660–1668.Google Scholar
  117. Tornos, F., Spiro, B. F., Shepherd, T. Y., & Ribera, F. (1997). Sandstone-hosted lodes of the southern West Asturian Leonese Zone (NW Spain). Chronique de la Recherche Minière, 528, 71–86.Google Scholar
  118. Ueda, A. H. R. K. (1986). Direct conversion of sulphide and sulphate minerals to SO2 for isotope analysis. Geochemical Journal, 20, 209–212.Google Scholar
  119. Valkiers, S., Vendelbo, D., Berglund, M., & Podesta, M. (2010). Preparation of argon primary measurement standards for the calibration of ion current ratios measured in argon. International Journal of Mass Spectrometry, 291, 41–47.Google Scholar
  120. Vallance, J., Cathelineau, M., Boiron, M. C., Fourcade, S., Shepherd, T. J., & Naden, J. (2003). Fluid–rock interactions and the role of late Hercynian aplite intrusion in the genesis of the Castromil gold deposit, northern Portugal. Chemical Geology, 194, 201–224.Google Scholar
  121. Valle Aguado, B., Azevedo, M. R., Schaltegger, U., Martínez Catalán, J. R., & Nolan, J. (2005). U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos, 82, 169–184.Google Scholar
  122. Zhai, W., Sun, X., Wu, Y., Sun, Y., Hua, R., & Ye, X. (2012). He–Ar isotope geochemistry of the Yaoling-Meiziwo tungsten deposit, North Guangdong Province: Constraints on Yanshanian crust-mantle interaction and metallogenesis in SE China. Chinese Science Bulletin, 57(10), 1150–1159.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Geobiotec, Departamento de GeociênciasUniversidade de AveiroAveiroPortugal
  2. 2.Departamento de Ciências da TerraUniversidade de CoimbraCoimbraPortugal
  3. 3.Instituto de Ciências da Terra (ICT), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Departamento de Ciências da TerraUniversidade do Minho, GualtarBragaPortugal
  5. 5.Instituto de Ciências da Terra (ICT), Departamento de Geociências, ECTUniversidade de ÉvoraÉvoraPortugal
  6. 6.Department of Geosciences and CEEDUniversity of OsloOsloNorway

Personalised recommendations