Advertisement

Journal of Iberian Geology

, Volume 45, Issue 3, pp 427–442 | Cite as

Quaternary tectonic activity of the São Marcos–Quarteira fault (Algarve, southern Portugal): a case study for the characterization of the active geodynamic setting of SW Iberia

  • J. CabralEmail author
  • R. P. Dias
  • Pedro P. Cunha
  • M. C. Cabral
Research Paper
  • 25 Downloads

Abstract

Tectonic deformation along the São Marcos–Quarteira fault zone affecting lithostratigraphic units ascribed to the Pliocene (the Falésia Sands) and to the Middle to Upper Pleistocene (the Boliqueime Sands and the Barrancosa Sands) is studied at the Boliqueime area, Algarve (southern mainland Portugal). Evidence for this tectonic activity includes brittle (faults and joints) and ductile (drag folds) deformation structures, as well as other structures interpreted as generated by liquefaction and fluidization phenomena. The biostratigraphical study of samples collected from the Boliqueime Sands unit allows to propose a Pleistocene age based upon its content of ostracod species, pointing to a probable Calabrian to Middle Pleistocene (ca. 1.8 Ma to 130 ka) time constraint. This age is now also constrained by optically stimulated luminescence, the K-feldspar post-IRIR290 dating of a sediment sample collected from a faulted sand layer of the Boliqueime Sands having provided a minimum age of 250 ka. This study thus supports the Quaternary activity of that major regional structure, which has the potential to generate an Mw 7+ earthquake with surface rupture, a conclusion that has high relevance for the seismic hazard assessment of the very populated area of influence.

Keywords

Neotectonics Active faults Seismites Luminescence dating Ostracods Southern Portugal 

Resumen

En este trabajo se estudia la deformación tectónica a lo largo de la falla Sao Marcos - Quarteira que afecta a diferentes unidades estratigráficas de edades Plioceno (Unidad Falésia Sands) y Plioceno Medio y Superior (unidades Boliqueime Sands y Barracosa Sands) en la zona de Boliqueime (Algarve S Portugal). La evidencia de esta actividad tectónica incluye la aparición de estructuras de deformación frágil (fallas y diaclasas) y dúctil (pliegues de arrastre), así como otras estructuras interpretadas por fenómenos de licuefacción y fluidificación. El estudio bioestratigráfico obtenido por la toma de muestras de la Unidad Boliqueime Sands permite atribuir esta unidad al Pleistoceno en base al contenido de ostrácodos de diferentes especies, lo que apunta a un probable rango de edad que oscila entre Calabriano y Pleistoceno Medio (ca. 1.8 Ma a 130 Ka). Esta unidad ha podido precisarse más mediante el estudio de análisis de luminiscencia estimulada ópticamente. La datación post-IRIR290 en feldespato potásico de una muestra obtenida en un nivel arenoso de la Unidad Boliqueime Sands afectado por fallas proporciona una edad mínima de 250 Ka. Este estudio evidencia la actividad Cuaternaria de la falla Sao Marcos-Quartira, una importante estructura tectónica regional con el potencial de generar terremotos Mw7+ y producir ruptura superficial, una conclusión de gran relevancia para la evaluación de la peligrosidad sísmica en una zona densamente poblada, como es el Algarve.

Palabras clave

Neotectónica fallas activas sismitas datación por luminiscencia, ostracodos Sur de Portugal 

Notes

Acknowledgements

This study was supported by Fundação para a Ciência e a Tecnologia - FCT, through projects PTDC/GEO–GEO/2860/2012 (FASTLOAD), UID/GEO/50019/2019 – IDL, 04683/2013 – ICT, and UID/MAR/04292/2013 – MARE. The authors would like to thank Andrew S. Murray, Jan-Pieter Buylaert and Vicki Hansen for the measurements in the Nordic Laboratory for Luminescence Dating (Aarhus University, Risø DTU, Denmark). Telmo Nunes (Unidade de Microscopia, Lisbon University) took the ostracods SEM images and Vera Lopes (Department of Geology, Lisbon University) prepared the ostracods figure for which we thank them. The authors also wish to thank Hector Perea and an anonymous reviewer for the comments and suggestions that greatly improved the manuscript.

Supplementary material

41513_2019_102_MOESM1_ESM.docx (17 kb)
Supplementary file1 (DOCX 17 kb)
41513_2019_102_MOESM2_ESM.jpg (1.3 mb)
Figure: Ostracod assemblage identified in Boliqueime sections B(P) and B(P)E (Fig. 4, sites g and f, respectively): a – Limnocythere inopinata (Baird, 1843), LV, external, juvenile, sample B(P)E-5; b-c – Paralimnocythere compressa (Brady & Norman, 1889), RV, external, sample B(P)E-1 and LV, external, juvenile, sample B(P)E-5; d – Paralimnocythere messanai Martens, 1992, LV, external, sample B(P)E-5; e – Candona angulata G. W. Müller, 1900, LV, external, sample B(P)E-1; f – Candona neglecta Sars, 1887, RV, external, sample B(P)E-1; g – Fabaeformiscandona fabaeformis (Fischer, 1851), RV, external, sample B(P)E-1; h – Pseudocandona cf. gr. zschokkei (Wolf, 1920) sensu Danielopol & Hartmann, 1986, LV, external, juvenile, sample B(P)E-4; i – Cypridopsis vidua (O. F. Müller, 1776), C, right view, sample B(P)E-1; j – Cypris cf. falki Janz, 1997, LV, external, juvenile, sample B(P)E-8T; k – Heterocypris incongruens (Ramdohr, 1808), C, right view, juvenile, sample B(P)E-6; l-m – Sclerocypris gr. bicornis (G. W. Müller, 1900), RV, external, juvenile, sample B(P)E-7 and RV, external, juvenile, sample B(P)E-1; n – Zonocypris cf. costata (Vávra, 1897), C, right view, sample B(P)-1; o – Ilyocypris bradyi Sars, 1890, RV, external, sample B(P)E-4; p – Ilyocypris gibba (Ramdohr, 1808), LV, external, juvenile, sample B(P)E-1; q – Darwinula stevensoni (Brady & Robertson, 1870), LV, external, sample B(P)E-8; r – Penthesilenula brasiliensis (Pinto & Kotzian, 1961), C, right view, sample B(P)E-5; s – Vestalenula cylindrica (Straub, 1952), RV, internal, sample B(P)-1; t – Vestalenula pagliolii (Pinto & Kotzian, 1961), RV, external, sample B(P)E-5; u – Vestalenula cf. sp. B (Danielopol, 1980), RV, external, sample B(P)E-6; C carapace; LV left valve; RV right valve; Scale bars = 100 μm (JPG 1298 kb)

References

  1. Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., & Sohbati, R. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas, 41, 435–451.CrossRefGoogle Scholar
  2. Cabral, J. (2012). Neotectonics of mainland Portugal: state of the art and future perspectives. Journal of Iberian Geology, 38(1), 71–74.  https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39206.CrossRefGoogle Scholar
  3. Cabral, J., Mendes, V. B., Figueiredo, P., Silveira, A. B., Pagarete, J., Ribeiro, A., et al. (2017). Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics. Journal of Geodynamics, 112, 1–11.  https://doi.org/10.1016/j.jog.2017.10.002.CrossRefGoogle Scholar
  4. Cabral, M. C., Colin, J.-P., & Carbonel, P. (2004). First occurrence of the genus Zonocypris (Ostracoda) in the Pleistocene of Western Europe (Portugal). Journal of Micropalaeontology, 23, 105–106.CrossRefGoogle Scholar
  5. Cabral, M. C., Colin, J.-P., & Carbonel, P. (2005a). Espèces pléistocènes de la famille Darwinulidae Brady and Norman, 1889 (Ostracodes), en Algarve, sud Portugal. Revue de micropaléontologie, 48, 51–62.CrossRefGoogle Scholar
  6. Cabral, M. C., Colin, J.-P., & Carbonel, P. (2005b). First occurrence of the genus Sclerocypris Sars, 1924 (Ostracoda) in the Pleistocene of Western Europe (Portugal). Journal of Micropalaeontology, 24, 169–170.  https://doi.org/10.1144/jm.24.2.169.CrossRefGoogle Scholar
  7. Cachão, M., Boski, T., Moura, D., Dias, R. P., Silva, C. M., Santos, A., Pimentel, N. & Cabral, J. (1998). Proposta de articulação das unidades sedimentares neogénicas e quaternárias do Algarve (Portugal). Comunicações. Actas do V Congresso Nacional de Geologia. Com. Inst. Geol. e Min., Lisboa, 84 (1), A169–A172.Google Scholar
  8. Calais, E., DeMets, C., & Nocquet, J. M. (2003). Evidence for a post-3.16-Ma change in Nubia-Eurasia-North America plate motions? Earth and Planetary Science Letters, 216, 81–92.  https://doi.org/10.1016/S0012-821X(03)00482-5.CrossRefGoogle Scholar
  9. Carrilho, F. (2005). Estudo da Sismicidade da Zona Sudoeste de Portugal Continental. MSc thesis, University of Lisbon, pp 160.Google Scholar
  10. Carrilho, F., Senos, M. L., Fitas, A., & Borges, F. (1997). Estudo da Sismicidade do Algarve, 3ºEncontro de Sismologia e Engenharia Sísmica. Sísmica, Lisboa: Soc. Portug. Eng.Google Scholar
  11. Carrilho, F., Teves-Costa, P., Morais, I., Pagarete, J. & Dias, R. (2004). "GEOALGAR Project: First Results on Seismicity and Fault-plane Solutions." Pure appl. Geophys., 161, 589–606, 0033-4553/04/030589-18, doi: 10.1007/s00024-003-02464-3.Google Scholar
  12. Carvalho, J., Torres, L., Rocha, R., & Dias, R., Mendes-Victor, L. (2006). A geophysical study of the S Marcos-Quarteira fault, Portugal, Journal of Applied Geophysics, 60, 153–164.  https://doi.org/10.1016/j.jappgeo.2006.02.002.CrossRefGoogle Scholar
  13. Cunha, P. P., Martins, A., Buylaert, J.-P., Murray, A. S., Raposo, L., Mozzi, P., et al. (2017). New data on the chronology of the Vale do Forno sedimentary sequence (Lower Tejo River terrace staircase) and its relevance as a fluvial archive of the Middle Pleistocene in western Iberia. Quaternary Science Reviews, 166, 204–226.  https://doi.org/10.1016/j.quascirev.2016.11.001.CrossRefGoogle Scholar
  14. Cunha, T. A., Matias, L. M., Terrinha, P., Negredo, A. M., Rosas, F., Fernandes, R. M. S., et al. (2012). Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: A reassessment including recent structural, seismic and geodetic data. Geophysical Journal International, 188(3), 850–872.  https://doi.org/10.1111/j.1365-246X.2011.05328.x.CrossRefGoogle Scholar
  15. Custódio, S., Dias, N. A., Carrilho, F., Góngora, E., Rio, I., Marreiros, C., et al. (2015). Earthquakes in western Iberia: improving the understanding of lithospheric deformation in a slowly deforming region. Geophysical Journal International, 203, 127–145.  https://doi.org/10.1093/gji/ggv285.CrossRefGoogle Scholar
  16. Custódio, S., Lima, V., Vales, D., Cesca, S., & Carrilho, F. (2016). Imaging active faults in a region of distributed deformation from the joint clustering of focal mechanisms and hypocenters: application to the Azores-Western Mediterranean region. Tectonophysics, 676, 70–89.  https://doi.org/10.1016/j.tecto.2016.03.013.CrossRefGoogle Scholar
  17. De Vicente, G., Cloetingh, S., Van Wees, J. D., & Cunha, P. P. (2011). Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics, 502(1–2), 38–61.  https://doi.org/10.1016/j.tecto.2011.02.007.CrossRefGoogle Scholar
  18. DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal timescale. Geophysical Research Letters, 21, 2191–2194.  https://doi.org/10.1029/94GL02118.CrossRefGoogle Scholar
  19. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.  https://doi.org/10.1111/j.1365-246X.2009.04491.x.CrossRefGoogle Scholar
  20. Dias, R. P. (2001). Neotectónica da Região do Algarve. PhD dissertation, Universidade de Lisboa, Portugal, 369 pp.Google Scholar
  21. Dias, R. P., & Cabral, J. (2000). Paleoseismicity evidence in Algarve region, Abstracts 2ª Assembleia Luso-Espanhola de Geodesia e Geofísica, Lagos (pp. 143–144). Instituto Geofísico Infante D. Luís: University of Lisbon.Google Scholar
  22. Dias, R. P., & Cabral, J. (2002a). Interpretation of recent structures in an area of cryptokarst evolution – Neotectonic versus subsidence genesis. Geodinamica Acta, 15, 233–248.CrossRefGoogle Scholar
  23. Dias, R. P., & Cabral, J. (2002b). Neotectónica da região do Algarve. Comunicações do Instituto Geológico e Mineiro, 89, 193–208.Google Scholar
  24. Dias, R. P., Cabral, J. & Pena Reis, R. (2004). Paleoseismites and structures related to karst evolution in the Algarve region. In Dinis, J. L. and Proença Cunha, P. (Eds.): Cretaceous and Cenozoic Events in West Iberia Margins. 23rd Meeting of Sedimentology, Coimbra, 2004, Field Trip Guidebook Volume 2, 73–91.Google Scholar
  25. Dias, R. P., Cabral, J., Cabral, M. C. & Carvalho, J. (2006). Estruturas neotectónicas em depósitos pleistocénicos, região de Boliqueime (Zona de Falha de S. Marcos-Quarteira). VII Congresso Nacional de Geologia, Estremoz, 2006, Abstracts Book, 263–266.Google Scholar
  26. Fernandes, R. M. S., Ambrosius, B. A. C., Noomen, R., Bastos, L., Wortel, M. J. R., Spakman, W., et al. (2003G). The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophysical Research Letters, 30, 1828.  https://doi.org/10.1029/2003GL017089.CrossRefGoogle Scholar
  27. Figueiredo, P. M. (2015). Neotectonics of the Southwest Portugal Mainland: Implications on the Regional Seismic Hazard. PhD Thesis, Universidade de Lisboa, 263 pp.Google Scholar
  28. Figueiredo, P. M., Cabral, J., & Rockwell, T. K. (2013). Recognition of Pleistocene marine terraces in the southwest of Portugal (Iberian Peninsula): evidences of regional Quaternary Uplift. Annals of Geophysics, 56(6), S0672.  https://doi.org/10.4401/ag-6276.Google Scholar
  29. Fukao, Y. (1973). Thrust faulting at a lithospheric plate boundary. The Portugal earthquake of 1969. Earth and Planetary Science Letters, 18(2), 205–216, doi: 0.1016/0012-821X(73)90058-7.Google Scholar
  30. Gràcia, E., Dañobeitia, J., Vergés, J., & the PARSIFAL Team. (2003). Mapping active faults offshore Portugal (36° N-38° N): Implications for seismic hazard assessment along the southwest Iberian margin. Geology, 31(1), 83–86. 10.1130/0091-7613(2003) 031<0003:IOEOTS>2.0.CO;2.Google Scholar
  31. Gutscher, M.-A., Malod, J., Rehault, J.-P., Contrucci, I., Klingelhoefer, F., & Spakman, W. (2002). & Mendes-Victor, L. Evidence for active subduction beneath Gibraltar: Geology, 30, 1071–1074.  https://doi.org/10.1130/0091-7613(2002)030<1071:EFASBG>2.0.CO;2.Google Scholar
  32. Horne, D. J., Cohen, A. & Martens, K. (2002). Taxonomy, Morphology and Biology of Quaternary and Living Ostracoda. In: Holmes, J. A., Chivas, A. R. (Eds). The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Geophysical Monograph, 131, 5–36.Google Scholar
  33. Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regions—III. New Madrid 1811–1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, 314–344.  https://doi.org/10.1111/j.1365-246X.1996.tb07028.x.CrossRefGoogle Scholar
  34. Karanovic, I. (2012). Recent Freshwater Ostracods of the World (Crustacea, Ostracoda, Podocopida) (p. 608). Heidelberg: Springer.CrossRefGoogle Scholar
  35. Kullberg, J. C., Pais, J., & Manuppella, G. (1992). Aspectos gerais da tectónica alpina no Algarve. Ciências da Terra, 11, 293–302.Google Scholar
  36. Lopes, F. C. (2002). Análise tectono-sedimentar do Cenozóico da Margem Algarvia. PhD thesis, Universidade de Coimbra, 593 pp.Google Scholar
  37. Lopes, F. C., Cunha, P. P., & Le Gall, B. (2006). Cenozoic seismic stratigraphy and tectonic evolution of the Algarve margin (offshore Portugal, southwestern Iberian Peninsula). Marine Geology, 231, 1–36.CrossRefGoogle Scholar
  38. Lopes, F. C. & Cunha, P. P. (2007). Tectono-sedimentary phases of the latest Cretaceous and Cainozoic compressive evolution of the Algarve margin (southern Portugal). Chapter 6 In: Nichols, G. J., Williams, E. A. and Paola, C. (Eds) Sedimentary processes, environments and basins — a tribute to Peter Friend. Wiley-Blackwell Publishing LTD, International Association of Sedimentologists Special Publication, 38, pp. 111–136. ISBN: 978-1-4051-7922-5.Google Scholar
  39. Lopes, F. C., Pereira, L. C. Gama, Gomes, A. A., Cunha, P. P., Gomes, C. R. & Martins, A. A. (2015). Os relevos calcários da região central do Barrocal Algarvio (sul de Portugal). VIII Symposium on the Iberian Atlantic Margin (Proceedings), Malaga (Spain), Ediciones Sia Graf. Málaga, pp. 145–147. Nº Depósito Legal: MA 1272-2015.Google Scholar
  40. Manuppella, G. (1992). Carta Geológica da Região do Algarve, escala 1/100 000 (p. 15). Lisboa: Notícia Explicativa. Serv. Geol. Port.Google Scholar
  41. Manuppella, G. (1988). Litoestratigrafia e Tectónica da Bacia Algarvia. Geonovas, 10, 67–71.Google Scholar
  42. Martínez-Loriente, S., Sallarès, V., Gràcia, E., Bartolome, R., Dañobeitia, J. J., & Zitellini, N. (2014). Seismic and gravity constraints on the nature of the basement in the Africa-Eurasia plate boundary: New insights for the geodynamic evolution of the SW Iberian margin. Journal of Geophysical Research: Solid Earth, 119, 127–149.  https://doi.org/10.1002/2013JB010476.Google Scholar
  43. Martínez-Loriente, S., Gràcia, E., Bartolome, R., Perea, H., Klaeschen, D., Dañobeitia, J. J., et al. (2018). Morphostructure, tectono-sedimentary evolution and seismic potential of the Horseshoe Fault. SW Iberian Margin. Basin Research, 30(Suppl. 1), 382–400.  https://doi.org/10.1111/bre.12225.CrossRefGoogle Scholar
  44. Martínez-Solares, J. M. & López-Arroyo, A. (2004). The great historical 1755 earthquake. Effects and damage in Spain. Journal of Seismology, 8(2), 275–294, doi: 10.1023/B:JOSE.0000021365.94606.03.Google Scholar
  45. Martínez-Solares, J. M. & Mezcua, J. (2002). Catálogo sísmico de la Península Ibérica (880 a.C.–1900), Monografia, Vol. 18, Instituto Geográfico Nacional, Madrid, 253 pp. + 1 map.Google Scholar
  46. Martins, I. & Mendes-Victor, L. A. (2001). Contribuição para o Estudo da Sismicidade da Região Oeste da Península Ibérica. Universidade de Lisboa, IGIDL, Pub. 25, ISSN 0870–2748.Google Scholar
  47. Meisch, C. (2000). Crustacea: Ostracoda. Süßwasserfauna von Mitteleuropa. 8(3), xiii + 1-522. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  48. Mezcua, J. (1982). Catálogo General de Isosistas de la Peninsula Ibérica. Publicación 202, Instituto Geográfico Nacional, Madrid, 61 pp.Google Scholar
  49. Miranda, R., Valadares, V., Terrinha, P., Mata, J., Azevedo, M. R., Gaspar, M., et al. (2009). Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian Margin. Cretaceous Research, 30, 575–586.  https://doi.org/10.1016/j.cretres.2008.11.002.CrossRefGoogle Scholar
  50. Moura, D. (1998). Litostratigrafia do Neogénico Terminal e Plistocénico, na Bacia Centro-Algarve, evolução paleoambiental. PhD Dissertation, Universidade do Algarve, Faro, 256 pp.Google Scholar
  51. Moura, D., & Boski, T. (1999). Unidades litostratigráficas do Pliocénico e Plistocénico no Algarve. Comunicações do Instituto Geológico e Mineiro, Lisboa, 86, 85–106.Google Scholar
  52. Murray, A. S., & Wintle, A. G. (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37, 377–381.CrossRefGoogle Scholar
  53. Neres, M., Carafa, M. M. C., Fernandes, R. M. S., Matias, L., Duarte, J. C., Barba, S., et al. (2016J). Lithospheric deformation in the Africa-Iberia plate boundary: Improved neotectonic modeling testing a basal-driven Alboran plate. J. Geophys. Res. Solid Earth.  https://doi.org/10.1002/2016JB013012.Google Scholar
  54. Nocquet, J. M., & Calais, E. (2004). Geodetic Measurements of Crustal Deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics, 161, 661–681.  https://doi.org/10.1007/s00024-003-2468-z.CrossRefGoogle Scholar
  55. Oliveira, J. T., Pereira, E., Ramalho, M. M., Antunes, M. T., & Monteiro J. H. (Coords.) (1992). Carta Geológica de Portugal, Escala 1:500.000, Serviços Geológicos de Portugal, Lisboa.Google Scholar
  56. Pais, J., Cunha, P. P., Pereira, D., Legoinha, P., Dias, R., Moura, D., Brum da Silveira, A., Kullberg, J. C. & González-Delgado, J. A. (2012). The Paleogene and Neogene of Western Iberia (Portugal). A Cenozoic record in the European Atlantic domain. Springer Briefs in Earth Sciences, Springer, Series ID: 8897, 1st Edition, 1 vol., 158 pages ISSN: 2191-5369; Electronic ISBN: 978-3-642-22401-0; Print ISBN: 978-3-642-22400-3; Book doi: 10.1007/978-3-642-22401-0.Google Scholar
  57. Palano, M., González, P. J., & Fernández, J. (2015). The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters, 430, 439–447.  https://doi.org/10.1016/j.epsl.2015.08.040.CrossRefGoogle Scholar
  58. Ramos, A., Fernández, O., Terrinha, P., & Muñoz, J. A. (2015). Extension and inversion structures in the Tethys-Atlantic linkage zone, Algarve Basin. Portugal. International Journal of Earth Sciences (Geol Rundsch).  https://doi.org/10.1007/s00531-015-1280-1.Google Scholar
  59. Ressurreição, R., Cabral, J., Dias, R. P., Carvalho, J., & Pinto, C. (2011). Neotectonic activity on the Carcavai fault zone. Comunicações Geológicas, LNEG, 98, 5–14.Google Scholar
  60. Rosas, F. M., Duarte, J. C., Terrinha, P., Valadares, V., & Matias, L. (2009). Morphotectonic characterization of major bathymetric lineaments in Gulf of Cadiz (Africa–Iberia plate boundary): Insights from analogue modelling experiments. Marine Geology, 261, 33–47.  https://doi.org/10.1016/j.margeo.2008.08.002.CrossRefGoogle Scholar
  61. Rosas, F. M., Duarte, J. C., Neves, M. C., Terrinha, P., Silva, S., Matias, L., et al. (2012). Thrust–wrench interference between major active faults in the Gulf of Cadiz (Africa–Eurasia plate boundary, offshore SW Iberia): Tectonic implications from coupled analog and numerical modeling. Tectonophysics, 548–549, 1–21.  https://doi.org/10.1016/j.tecto.2012.04.013.CrossRefGoogle Scholar
  62. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., et al. (2007). Kinematics of the western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200.  https://doi.org/10.1111/j.1365-246X.2007.03367.x.CrossRefGoogle Scholar
  63. Silva, S., Terrinha, P., Matias, L., Duarte, J., Roque, C., Ranero, C., & Zitellini, N. (2017). Micro-seismicity in the Gulf of Cadiz. Is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics, 717, 226–241, ISSN 0040-1951, https://dx.doi.org/10.1016/j.tecto.2017.07.026
  64. Stich, D., Mancilla, F., Pondrelli, S. & Morales, J. (2007). Source analysis of the February 12th 2007, Mw 6.0 Horseshoe earthquake: Implications for the 1755 Lisbon earthquake. Geophysical Research Letters, 34, L12308, doi:10.1029/2007GL030012.Google Scholar
  65. Terrinha, P. A. G. (1998). Structural Geology and Tectonic Evolution of the Algarve Basin, South Portugal. PhD Thesis, Imperial College, London, 430 pp.Google Scholar
  66. Terrinha, P., Pinheiro, L. M., Henriet, J.-P., Matias, L., Ivanov, M. K., Monteiro, J. H., et al. (2003). Tsunamigenic-seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Marine Geology, 195, 55–73.  https://doi.org/10.1016/S0025-3227(02)00682-5.CrossRefGoogle Scholar
  67. Terrinha, P., Rocha, R., Rey, J., Cachão, M., Moura, D., Roque, C., Martins, L., Valadares, V., Cabral, J., Azevedo, M. R., Barbero, L., Clavijo, E., Dias, R. P., Gafeira, J., Matias, H., Matias, L., Madeira, J., Marques da Silva, C., Munhá, J., Rebelo, L., Ribeiro, C., Vicente J. & Youbi, N. (2006). A Bacia do Algarve: Estratigrafia, Paleogeografia e Tectónica. In Geologia de Portugal no contexto da Ibéria (Dias, R., Araújo, A., Terrinha, P. and Kullberg, J., Editors). Univ. Évora, Évora, 247–316. ISBN: 972-778-094-6.Google Scholar
  68. Udías, A., López Arroyo, A., & Mezcua, J. (1976). Seismotectonic of the Azores-Alboran region: Tectonophysics, 31, 259–289.Google Scholar
  69. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.Google Scholar
  70. Wesnousky, S. G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4), 1609–1632.CrossRefGoogle Scholar
  71. Zitellini, N., Chierici, F., Sartori, R., & Torelli, L. (1999). The tectonic source of the 1755 Lisbon earthquake and tsunami. Annali di Geofisica, 42(1), 49–55.  https://doi.org/10.4401/ag-3699.Google Scholar
  72. Zitellini, N., Mendes, L. A., Cordoba, D., Danobeitia, J., Nicolich, R., Pellis, G., et al. (2001). Source of 1755 Lisbon Earthquake and Tsunami Investigated. Eos, Transactions, American Geophysical Union, 82(26), 282–285.  https://doi.org/10.1029/EO082i026p00285-01.Google Scholar
  73. Zitellini, N., Rovere, M., Terrinha, P., Chierici, F., Matias, L., Ribeiro, A., et al. (2004). Neogene Through Quaternary Tectonic Reactivation of SW Iberian Passive Margin. Pure and Applied Geophysics, 161, 565–587.  https://doi.org/10.1007/s00024-003-2463-4.CrossRefGoogle Scholar
  74. Zitellini, N., Gràcia, E., Matias, L., Terrinha, P., Abreu, M. A., DeAlteriis, G., et al. (2009). The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters, 280, 13–50.  https://doi.org/10.1016/j.epsl.2008.12.005.CrossRefGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  • J. Cabral
    • 1
    Email author
  • R. P. Dias
    • 2
  • Pedro P. Cunha
    • 3
  • M. C. Cabral
    • 1
    • 4
  1. 1.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisbonLisbonPortugal
  2. 2.Laboratório Nacional de Energia e GeologiaAmadoraPortugal
  3. 3.Department of Earth Sciences, MARE, Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
  4. 4.Departamento de Geologia, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations