Journal of Iberian Geology

, Volume 45, Issue 3, pp 401–426 | Cite as

Mineral chemistry of megacrysts and associated clinopyroxenite enclaves in the Calatrava volcanic field: crystallization processes in mantle magma chambers

  • C. VillasecaEmail author
  • O. Dorado
  • D. Orejana
Research Paper


Clinopyroxene, amphibole and phlogopite megacrysts appear in the crystal- and xenolith-rich pyroclastic deposits of the Cerro Pelado and the El Aprisco volcanoes (Calatrava volcanic field). These megacrysts display a similar composition to crystals forming clinopyroxenite and rare phlogopite-rich (glimmerite) enclaves. The host magmas are highly porphyritic, showing a complex population of mafic macrocrysts and phenocryst cores. Most of these crystals are chemically similar, suggesting that they constitute a cogenetic suite of phenocrystic origin. Geobarometric estimations indicate that megacrysts and enclaves represent high-P cumulates, mostly formed at about 12–16 kbar within the upper lithospheric mantle (35 to 55 km). The compositional variability of the analyzed minerals indicates a differentiation process controlled by fractionation of olivine, clinopyroxene, amphibole and phlogopite. The crystallization of hydrous mafic minerals at mantle depths facilitated CO2 exsolution and subsequent boiling of the host magma, thus triggering the fragmentation of the semi-crystallized margin of the magma chamber and the excavation of mantle wall-rocks. This deep fragmentation could also explain the complex variety of crystals, enclaves and xenoliths dragged by the volcanic magmas. Two clinopyroxene types (green and colourless) have been found, both as antecrysts (macrocryst/phenocryst cores) and within enclaves. The coexistence of these clinopyroxenes within zoned crystals in clinopyroxenites suggests that they might be cognate, representing primitive and evolved products of a single fractionating magma. This study provides a model for the ascent of crystal- and xenolith-rich magmas that could be regarded in other alkaline volcanics carrying complex crystal cargos from the Cenozoic circum-Mediterranean area.


Mafic megacrysts Clinopyroxenite Glimmerite Melilitite melt Calatrava volcanic field Alkaline circum-Mediterranean province 


Megacristales de clinopiroxeno, anfíbol y flogopita aparecen en los depósitos piroclásticos ricos en cristales, enclaves y xenolitos, de los volcanes de El Aprisco y Cerro Pelado (campo volcánico de Calatrava). Estos megacristales muestran una composición química similar a los cristales que forman los enclaves clinopiroxeníticos asociados, incluyendo los poco comunes enclaves ricos en flogopita (glimmeritas). El magma volcánico es de textura porfídica, mostrando una compleja población de fenocristales y macrocristales máficos, con núcleos residuales, que sugieren formen una suite cogenética con aquellos. Las estimaciones geobarométricas indican que los megacristales, así como los núcleos de fenocristales y los enclaves clinopiroxeníticos representan acumulados de alta presión, formados entre 12–16 kbar, en el manto litosférico superior (de 35 a 55 km). La variabilidad composicional de estos minerales máficos apunta a un proceso de diferenciación controlado por la cristalización de olivino, clinopiroxeno, anfíbol y flogopita. La cristalización de minerales máficos hidratados en el manto facilitaría la exsolución de CO2 y la subsecuente ebullición del fundido, posibilitando la fragmentación de los márgenes semicristalinos de la cámara magmática y la excavación de la roca mantélica encajante. Esta fragmentación profunda explicaría también la compleja variedad de cristales, enclaves y xenolitos atrapados por los magmas volcánicos. Se han encontrado dos tipos de clinopiroxenos (verde e incoloro) que aparecen como antecristales (núcleos de macrocristales/fenocristales) y también en los enclaves piroxeníticos. La coexistencia de ambos tipos de clinopiroxeno en los zonados cristalinos de las clinopyroxenitas sugiere que deben ser cogenéticos, representando precipitados de fundidos de distinto grado evolutivo, pero posiblemente de un mismo magma fraccionante. Este estudio propone un modelo de ascenso y origen de magmas ricos en cristales y xenolitos que puede ser útil para explicar otros tipos volcánicos que transportan complejos cargamentos de cristales profundos, como ocurre frecuentemente en la provincia volcánica circum-Mediterránea.

Palabras clave

megacristales máficos clinopyroxenita glimmerita fundidos melilitíticos campo volcánico de Calatrava provincia alcalina circum-Mediterránea 



We acknowledge Alfredo Fernández Larios for his assistance with the electron microprobe in the Centro Nacional de Microscopía Electrónica Luis Bru (UCM). We thank associate editor Teresa Ubide and the two reviewers Marco Brenna and Mario Gaeta for their helpful comments on an earlier version of this paper. This work is included in the objectives of, and supported by, the CGL2016-78796 project of the Ministerio de Economía y Competitividad de España, and the 910492 UCM project.

Supplementary material

41513_2019_101_MOESM1_ESM.xlsx (55 kb)
Supplementary material 1 (XLSX 55 kb) PT estimates based on clinopyroxene-liquid thermobarometry


  1. Allègre, C. J., & Turcotte, D. L. (1986). Implications of a two-component marble-cake mantle. Nature, 323, 123–127.CrossRefGoogle Scholar
  2. Ancochea, E. (1982). Evolución espacial y temporal del volcanismo reciente de España Central. Doctoral Thesis, Universidad Complutense de Madrid.Google Scholar
  3. Ancochea, E. (2004). La región volcánica del Campo de Calatrava. In J. A. Vera (Ed.), Geología de España (pp. 676–677). Madrid: SGE-IGME.Google Scholar
  4. Ancochea, E., & Nixon, P. H. (1987). Xenoliths in the Iberian Peninsula. In P. H. Nixon (Ed.), Mantle xenoliths (pp. 119–124). Chichester: Wiley.Google Scholar
  5. Andía, J. R. (2017). Caracterización de los xenolitos peridotíticos del volcán Los Tormos (Pozuelo de Calatrava, Ciudad Real) (pp. 49). Master thesis, Universidad Complutense.Google Scholar
  6. Andía, J., Villaseca, C., & Pérez-Soba, C. (2018). Mineralogical characterization of peridotite xenoliths from the Los Tormos volcano (Calatrava volcanic field). Geogaceta, 63, 99–102.Google Scholar
  7. Bailey, D. K. (1985). Fluids, melts, flowage, and styles of eruption in alkaline—ultra-alkaline magmatism. Transactions of the Geological Society of South Africa, 88, 449–457.Google Scholar
  8. Bodinier, J. L., Guiraud, M., Fabries, J., Dostal, J., & Dupuy, C. (1987). Petrogenesis of layered pyroxenites from the Lherz, Freychinede and Prades ultramafic bodies (Ariege, French Pyrenees). Geochimica et Cosmochimica Acta, 51, 279–290.CrossRefGoogle Scholar
  9. Bondi, M., Morten, L., Nimis, P., Rossi, P. L., & Tranne, C. A. (2002). Megacrysts and mafic-ultramafic xenolith-bearing ignimbrites from Sirwa Volcano, Morocco: phase petrology and thermobarometry. Mineralogy and Petrology, 75, 203–221.CrossRefGoogle Scholar
  10. Bonechi, B., Perinelli, C., Gaeta, M., Tecchiato, V., & Granati, S. F. (2017). Experimental constraints on amphibole stability in primary alkaline and calc-alkaline magmas. Periodico di Mineralogia, 86, 231–245.Google Scholar
  11. Bultitude, R. J., & Green, D. H. (1971). Experimental study of crystal-liquid relationships at high pressure in olivine nephelinite and basanite compositions. Journal of Petrology, 12, 121–147.CrossRefGoogle Scholar
  12. Bussweiler, Y., Foley, S. F., Prelevic, D., & Jacob, D. E. (2015). The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos, 220–223, 238–352.CrossRefGoogle Scholar
  13. Carminati, E., Lustrino, M., & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173–192.CrossRefGoogle Scholar
  14. Cebriá, J. M. (1992). Geoquímica de las rocas basálticas y leucititas de la region volcánicas de Campo de Calatrava, España (pp. 341). Doctoral Thesis, Universidad Complutense de Madrid.Google Scholar
  15. Cebriá, J. M., & López Ruiz, J. (1995). Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava volcanic province (central Spain). Lithos, 35, 27–46.CrossRefGoogle Scholar
  16. Cebriá, J. M., Martín-Escorza, C., López-Ruiz, J., Morán-Zenteno, D. J., & Martiny, B. M. (2011). Numerical recognition of alignments in monogenetic volcanic areas: examples from the Michoacán-Guanajato Volcanic Field in Mexico and Calatrava in Spain. Journal of Volcanology and Geothermal Research, 201, 73–82.CrossRefGoogle Scholar
  17. De Vicente, G., & Vegas, R. (2009). Large-scale distributed deformation controlled topography along the western Africa-Eurasia limit: tectonic constraints. Tectonophysics, 474, 124–143.CrossRefGoogle Scholar
  18. Dorado, O., Villaseca, C., & Orejana, D. (2016). Geoquímica de los megacristales de los volcanes de El Aprisco y Cerro Pelado (Campo de Calatrava). Macla, 21, 29–31.Google Scholar
  19. Downes, H. (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: Ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos, 99, 1–24.CrossRefGoogle Scholar
  20. Galán, G., Domenech, M., Oliveras, V., & Fernández-Roig, M. (2017). Megacrystals and related xenoliths in basaltic lavas from the San Corneli Volcano (Girona, NE Spain). Macla, 22, 45–46.Google Scholar
  21. Garrido, C. J., & Bodinier, J. L. (1999). Diversity of mafic rocks in the Ronda Peridotite; evidence for pervasive melt–rock reaction during heating subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology, 40, 729–754.CrossRefGoogle Scholar
  22. Gernon, T. M., Upton, B. G. J., Ugra, R., Yücel, C., Taylor, R. N., & Elliott, H. (2016). Complex subvolcanic magma plumbing system of an alkali basaltic maar-diatreme volcano (Elie Ness, Fife, Scotland). Lithos, 264, 70–85.CrossRefGoogle Scholar
  23. González-Jiménez, J. M., Villaseca, C., Griffin, W. I., O’Reilly, S. Y., Belousova, E., Ancochea, E., et al. (2014). Significance of ancient sulfide PGE and Re-Os signatures in the mantle beneath Calatrava, Central Spain. Contribution to Mineralogy and Petrology, 168, 1047.CrossRefGoogle Scholar
  24. Granet, M., Wilson, M., & Achauer, U. (1995). Imaging a mantle plume beneath the French Massif Central. Earth Planet Science Letters, 136, 281–296.CrossRefGoogle Scholar
  25. Granja Bruña, J. L., Vegas, R., Sentre, M. A., Muñoz-Martín, A., & Sainz-Maza, S. (2015). Gravity modeling of the lithosphere in the Calatrava Volcanic Province (Spain): geodynamic implications. Journal of Iberian Geology, 41, 233–252.CrossRefGoogle Scholar
  26. Green, D. H., & Hibberson, W. (1970). Experimental duplication of conditions of precipitation of high pressure phenocrysts in a basaltic magma. Physics of the Earth and Planetary Interiors, 3, 247–254.CrossRefGoogle Scholar
  27. Herrero-Hernández, A., López-Moro, F., Gallardo-Millán, J. L., Martín-Serrano, A., & Gómez-Fernández, F. (2015). Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study. International Journal of Earth Sciences, 104, 103–122.CrossRefGoogle Scholar
  28. Irving, A. J., & Frey, F. A. (1984). Trace element abundances in megacrysts and their host basalts; constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta, 48, 1201–1221.CrossRefGoogle Scholar
  29. Irving, A. J., & Green, D. H. (2008). Phase relationships of hydrous alkalic magmas at high pressures: production of nepheline hawaiitic to mugearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle. Journal of Petrology, 49, 741–756.CrossRefGoogle Scholar
  30. Jankovics, M. E., Taracsák, Z., Dobosi, G., Embey-Isztin, A., Batki, A., Harangi, S., et al. (2016). Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics. Lithos, 262, 120–134.CrossRefGoogle Scholar
  31. Kretz, R. (1983). Symbols of rock-forming minerals. American Mineralogist, 68, 277–279.Google Scholar
  32. Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., et al. (2004). Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineralogical Magazine, 68, 209–215.CrossRefGoogle Scholar
  33. Lierenfeld, M. B., & Mattsson, H. B. (2015). Geochemistry and eruptive behaviour of the Finca la Nava maar volcano (Campo de Calatrava, south-central Spain). International Journal of Earth Sciences, 104, 1795–1817.CrossRefGoogle Scholar
  34. Lloyd, F. E., & Stoppa, F. (2003). Pelletal lapilli in diatremes. Some inspiration from the old masters. GeoLines, 15, 65–71.Google Scholar
  35. López Ruiz, J., Cebriá, J. M., Doblas, M., Oyarzun, R., Hoyos, M., & Martín, C. (1993). The late Cenozoic alkaline volcanism of the central Iberian Peninsula (Calatrava Volcanic Province, Spain): intraplate volcanism related to extensional tectonics. Journal of the Geological Society, London, 150, 915–922.CrossRefGoogle Scholar
  36. López Ruiz, J., Cebriá, J. M., Doblas, M. (2002) Cenozoic volcanism I: the Iberian peninsula. In W. Gibbon & T. Moreno (Eds.), The geology of Spain (pp. 417–438). London: Geological Society.Google Scholar
  37. Lustrino, M., Prelevic, D., Agostini, S., Gaeta, M., Di Rocco, T., Stagno, V., et al. (2016). Ca-rich carbonates associated with ultrabasic-ultramafic melts: Carbonatite or limestone xenoliths? A case study from the late Miocene Morron de Villamayor volcano (Calatrava Volcanic Field, central Spain). Geochimica et Cosmochimica Acta, 185, 477–497.CrossRefGoogle Scholar
  38. Lustrino, M., & Wilson, M. (2007). The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Science Reviews, 81, 1–65.CrossRefGoogle Scholar
  39. Marsh, B. D. (1996). Solidification fronts and magmatic evolution. Mineralogical Magazine, 60, 5–40.CrossRefGoogle Scholar
  40. Mattsson, H. B., Nandedkar, R. H., & Ulmer, P. (2013). Petrogenesis of the melilititic and nephelinitic rock suites in the lake Natron-Engaruka monogenetic volcanic field, northern Tanzania. Lithos, 179, 175–192.CrossRefGoogle Scholar
  41. Neave, D. A., & Putirka, K. D. (2017). A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102, 777–794.CrossRefGoogle Scholar
  42. Orejana, D., Villaseca, C., & Paterson, B. A. (2006). Geochemistry of pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish Central System. Lithos, 86, 167–196.CrossRefGoogle Scholar
  43. Peterson, T. D., & LeCheminant, A. N. (1993). Glimmerite xenoliths in early proterozoic ultrapotassic rocks from the Churchill province. Canadian Mineralogist, 31, 801–819.Google Scholar
  44. Pilet, S., Ulmer, P., & Villiger, S. (2010). Liquid line of descent of a basanitic liquid at 1.5 GPa: Constraints on the formation of metasomatic veins. Contributions to Mineralogy and Petrology, 159, 621–643.CrossRefGoogle Scholar
  45. Praegel, N. O. (1981). Origin of ultramafic inclusions and megacrysts in a monchiquite dyke at Streap, Inverness-shire, Scotland. Lithos, 14, 305–322.CrossRefGoogle Scholar
  46. Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61–120.CrossRefGoogle Scholar
  47. Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric empirical equations valid up to 1130 °C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163, 877–895.CrossRefGoogle Scholar
  48. Roeder, P. L., & Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275–289.CrossRefGoogle Scholar
  49. Shaw, C. S. J., & Eyzaguirre, J. (2000). Origin of megacrysts in the mafic alkaline lavas of the West Eiffel volcanic field, Germany. Lithos, 50, 75–95.CrossRefGoogle Scholar
  50. Stoppa, F., Rosatelli, G., Schiazza, M., Tranquilli, A. (2012). Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava-Spain-Case history. In: F. Stoppa (Ed.) Updates in volcanologya comprehensive approach to volcanological problems (pp. 3–26). InTech. ISBN: 978-953-307-434-4.Google Scholar
  51. Sun, P., Niu, Y., Guo, P., Cui, H., Ye, L., & Liu, J. (2018). The evolution and ascent paths of mantle xenolith-bearing magma: Observations and insights from Cenozoic basalts in Southeast China. Lithos, 310–311, 171–181.CrossRefGoogle Scholar
  52. Ubide, T., Galé, C., Larrea, P., Arranz, E., & Lago, M. (2014). Antecrysts and their effect on rock compositions: The Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE Spain). Lithos, 206–207, 214–233.CrossRefGoogle Scholar
  53. Villaseca, C., Ancochea, E., Orejana, D., Jeffries, T. E. (2010). Composition and evolution of the lithospheric mantle in central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field. In M. Coltorti, H., Downes, M., Grégoire, S.Y. O’Reilly (Eds.), Petrological evolution of the European Lithospheric Mantle (Vol. 337, pp. 125–151). Geological Society Special Publication.Google Scholar
  54. Villaseca, C., Belousova, E., Barfod, D., & González-Jiménez, J. M. (2019). Dating metasomatic events in the lithospheric mantle beneath the Calatrava volcanic field (central Spain). Lithosphere. Scholar
  55. Wiesmaier, S., Deegan, F. M., Troll, V. R., Carracedo, J. C., Chadwick, J. P., & Chew, D. M. (2011). Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contributions to Mineralogy and Petrology, 162, 651–669.CrossRefGoogle Scholar
  56. Wilkinson, J. F. G. (1975). Ultramafic inclusions an high pressure megacrysts from a nephelinite sill, Nandewar Mountains, north-eastern New South Wales, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks. Contributions to Mineralogy and Petrology, 51, 235–262.CrossRefGoogle Scholar
  57. Wilkinson, J. F. G., & Stolz, A. J. (1997). Subcalcic clinopyroxenites and associated ultramafic xenoliths in alkali basalt near Glen Innes, northeastern New South Wales, Australia. Contributions to Mineralogy and Petrology, 127, 272–291.CrossRefGoogle Scholar
  58. Wilshire, H. G., & Shervais, J. W. (1975). Al–augite and Cr–diopside ultramafic xenoliths in basaltic rocks from western United States. Physics and Chemistry of the Earth, 9, 257–272.CrossRefGoogle Scholar
  59. Witt-Eickschen, G., & Kramm, U. (1998). Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contributions to Mineralogy and Petrology, 131, 258–272.CrossRefGoogle Scholar
  60. Yoshikawa, M., Kawamoto, T., Shibata, T., Yamamoto, J. (2010). Geochemical and Sr–Nd isotopic characteristics and pressure–temperature estimates of mantle xenoliths from the French Massif Central: Evidence for melting and multiple metasomatism by silicate-rich carbonatite and asthenospheric melts. In M. Coltorti, H., Downes, M., Grégoire, S. Y. O’Reilly (Eds.), Petrological evolution of the European Lithospheric Mantle (Vol. 337, pp. 153–175). London: Geological Society Special Publication.Google Scholar

Copyright information

© Universidad Complutense de Madrid 2019

Authors and Affiliations

  1. 1.Dpt. Mineralogía y Petrología, Facultad CC GeológicasUCMMadridSpain
  2. 2.Instituto de Geociencias IGEO (UCM, CSIC)MadridSpain

Personalised recommendations