Advertisement

Coastal wetlands as markers of transgression in proximal extensional systems (Berriasian, W Cameros Basin, Spain)

  • Ramón Mas
  • Mª. Eugenia Arribas
  • Laura González-Acebrón
  • I. Emma Quijada
  • Sonia Campos-Soto
  • Pablo Suarez-Gonzalez
  • Sara Sacristán-Horcajada
  • José Arribas
  • M. Isabel Benito
  • Carlos Pérez-Garrido
  • Ángela Alonso
Review Article

Abstract

The early stages of intraplate extensional systems commonly are recorded by deposition of continental sediments. In this context, given appropriate tectonics and eustasy, transgressions can be well recorded in the areas of the basins located close to the sea, but they may be difficult to recognize in the innermost landwards areas of the system. This situation occurs in the innermost Upper Jurassic-Early Cretaceous Cameros Basin, part of the Iberian Extensional System (N. Spain), where a Berriasian transgression is recorded. The Berriasian succession in this area consists of siliciclastic deposits (sandstone and mudstone) of the Salcedal Formation and of carbonate and mixed carbonate-fine siliciclastic deposits (limestone and marl) of the San Marcos Formation. The sedimentological analysis of this depositional succession indicates that a Berriasian carbonate coastal wetland system occupied that sector of the Cameros Basin during deposition of the San Marcos Formation. This carbonate coastal wetland system consisted of shallow and quiet water bodies including some with marine influence others with no to very little marine influence, and palustrine areas. A semiarid climate characterized by the seasonal alternation of short wet and long dry periods caused water bodies of the system to undergo episodic desiccation and subaerial exposure. Moreover, this complex mosaic of sub-environments was connected laterally with a distal zone of a distributive fluvial system that was rimmed by siliciclastic tidal flats during phases of greater marine influence. The paleogeographic arrangement of this coastal wetland depositional system indicates that the marine influence came from the Basque-Cantabrian Basin to the north. During the period of Berriasian maximum marine influence, accommodation linked to the eustatic rise added to accommodation generated by tectonic subsidence from the extensional reactivation of late Variscan strike-slip faults. All these factors favored marine incursion into the west Cameros Basin from the Basque-Cantabrian Basin to the north. The example of the Berriasian transgression recorded in the W Cameros Basin by establishment of coastal wetland systems matches the interpretations of previous studies in neighboring areas. In those areas, complex coastal systems record transgressions in the innermost parts of the intraplate extensional basins of the Iberian Plate. This observation suggests that this paleogeographic and sedimentological arrangement may be common in the innermost parts of intraplate extensional basins during transgressive episodes throughout the geological record.

Keywords

Coastal wetland Carbonates Earliest cretaceous transgression Innermost Iberian Basins West Cameros sub-Basin N Spain 

Resumen

El registro de las primeras etapas de sedimentación en sistemas extensionales intraplaca comúnmente está formado por depósitos continentales. En este contexto, y si se dan las condiciones tectónicas y eustáticas adecuadas, las transgresiones pueden quedar registradas en las áreas que se encuentran más cerca del mar, aunque son difíciles de reconocer en las áreas más internas de los sistemas extensionales. Esta situación tuvo lugar en el sector occidental de la Cuenca de Cameros (N de España) durante el Jurásico Superior - Cretácico Inferior, donde quedó registrada una transgresión de edad Berriasiense. El registro berriasiense en esta área está constituido por los depósitos siliciclásticos (areniscas y lutitas) de la Formación Salcedal y por los depósitos carbonáticos y mixtos siliciclásticos - carbonáticos (calizas y margas) de la Formación San Marcos. Específicamente, el análisis sedimentológico de la Fm. San Marcos indica que su sedimentación se produjo en un sistema de humedales costeros carbonáticos que ocupó el sector occidental de la Cuenca de Cameros durante el Berriasiense. Este sistema de humedales costeros estaba formado por cuerpos de agua dulce o con influencia marina, poco profundos, con desecación episódica, y rodeados de zonas palustres. Este sistema probablemente se desarrolló bajo un clima estacional y semiárido en el que alternaban periodos húmedos y cortos y periodos secos prolongados. Este complejo mosaico de subambientes costeros conectaba lateralmente con un sistema fluvial distributivo que, durante las fases de mayor influencia marina, estuvo bordeado por llanuras mareales siliciclásticas. La disposición paleogeográfica de este sistema de humedales costeros indica que la influencia marina procedía de la Cuenca Vasco-Cantábrica situada al norte. Durante la etapa de máxima influencia marina, la acomodación vinculada al ascenso eustático se sumó a la acomodación generada por la subsidencia tectónica ligada a la reactivación extensional de fallas variscas. Todos estos factores favorecieron las incursiones marinas desde la Cuenca Vasco-Cantábrica en la Cuenca de Cameros occidental. El ejemplo de la transgresión berriasiense registrada en la Cuenca Cameros occidental coincide con las interpretaciones previas realizadas en áreas adyacentes, también situadas en una zona interna de la Placa Ibérica, y donde también se desarrollaron sistemas costeros complejos afectados por episodios transgresivos.

Palabras clave

Humedales costeros carbonatos transgresión berriasiense cuencas ibéricas internas sector occidental de la Cuenca de Cameros N de España 

Notes

Acknowledgements

The authors are grateful to Dr. Ramon Salas and an anonymous referee for their thorough revision of the manuscript. We want to extend our thanks to Dr. Edoardo Perri, Dr. Brian Pratt, and Dr. Gene Rankey as their detailed comments and suggestions have helped us to significantly improve our work. Funding for this research was provided by the Spanish Ministry of Economy and Competitivity, projects CGL2011-22709 and CGL2014-52670-P, and by the research group ‘‘Sedimentary Basin Analysis’’ UCM 910429 of the Complutense University of Madrid, and by the Geosciences Institute (IGEO-CSIC). We thank also the Departments of Geodynamics, Stratigraphy, and Paleontology and Mineralogy and Petrology of the Complutense University of Madrid and the IGEO (CSIC) for their technical support.

References

  1. Allen, P. A., & Homewood, P. (1984). Evolution and mechanics of a miocene tidal sandwave. Sedimentology, 31, 63–81.CrossRefGoogle Scholar
  2. Alonso-Zarza, A. M., & Wright, V. P. (2010). Calcretes. In A. M. Alonso-Zarza & L. H. Tanner (Eds.), Carbonates in continental settings: facies, environments and processes (pp. 225–267). Amsterdam: Elsevier.CrossRefGoogle Scholar
  3. Arenas, C., & Pardo, G. (1999). Latest Oligocene–Late Miocene lacustrine systems of the north-central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis. Palaeogeography, Palaeoclimatology and Palaeoecology, 151, 127–148.CrossRefGoogle Scholar
  4. Armstrong, H. A., & Brasier, M. D. (2005). Microfossils (p. 304). Malden: Blackwell Publishing.Google Scholar
  5. Arribas, M. E. (1986). Petrología y análisis secuencial de los carbonatos lacustres del Paleógeno del sector N de la Cuenca Terciaria del Tajo. Cuadernos de Geología Ibérica, 10, 295–334.Google Scholar
  6. Arribas, J., Alonso, A., Mas, R., Tortosa, A., Rodas, M., Barrenechea, J. F., et al. (2003). Sandstone petrography of continental depositional sequences of an intraplate rift basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73, 309–327.CrossRefGoogle Scholar
  7. Arribas, M.E., Ardèvol, Ll. & López-Martínez, N. (1996). Lacustrine peritidal carbonates in the Upper cretaceous Tremp Formation (Àger syncline, Pyrenean foreland Basin, Spain). In 17th Regional African European meeting of Sedimentology, Abstracts, p. 15.Google Scholar
  8. Aurell, M., Mas, R., Meléndez, A., & Salas, R. (1994). El tránsito Jurásico–Cretácico en la Cordillera Ibérica: relación tectónica-sedimentación y evolución paleogeográfica. Cuadernos de Geología Ibérica, 18, 369–396.Google Scholar
  9. Baldwin, A. H., Barendregt, A., & Whigham, D. (2009). Tidal freshwater wetlands: an introduction to the ecosystem. In A. Barendregt, D. Whigham, & A. Baldwin (Eds.), Tidal freshwater wetlands (pp. 1–10). Leiden: Backhuys.Google Scholar
  10. Benito, M. I., Lohmann, K. C., & Mas, R. (2005). Paleogeography and paleoclimate in the Northern Iberian Basin of Spain: constraints from diagenetic records in reefal and continental carbonates. Journal of Sedimentary Research, 75, 82–96.CrossRefGoogle Scholar
  11. Benson, R. H., Berdan J. M., Van den Bold, W. A., Hanai, T., Hessland, l., Howe, H.V., et al., (1961). Part Q, Arthropoda: Crustacea: Ostracoda. In R. C. Moore (Ed.), Treatise on invertebrate paleontology (pp. 1–432). Kansas: Geologica1 Society of America and University of Kansas Press.Google Scholar
  12. Bermúdez-Rochas, D.D. (2015). Ictiofaunas del Cretácico inferior de las cuencas Vasco-Cantábrica y de Cameros en el registro español del MesozoicoEarly Cretaceous Ichthyofaunas from the Basque-Cantabrian and Cameros basins in the Spanish Mesozoic record. Unpublished Ph.D. Thesis. Universidad Complutense de Madrid. Spain. p. 593.Google Scholar
  13. Beuther, A. (1966). Geologische Untersuchungen in Wealden und Utrillas-Schichten im Westteil der Sierra de los Cameros (Nordwestliche Iberische Ketten). Beihefte zum Geologischen Jahrbuch, 44, 103–121.Google Scholar
  14. Bridge, J. S. (2003). Rivers and Floodplains: Forms, Processes and Sedimentary Record (p. 491). Oxford: Blackwell.Google Scholar
  15. Bridge, J. S. (2006). Fluvial facies models: recent developments. In H. W. Posamentier & R. G. Walker (Eds.), Facies models revisited (pp. 85–170). Tulsa: SEPM Special Publication 84.CrossRefGoogle Scholar
  16. Bustillo, A., Arribas, M. E., & Bustillo, M. (2002). Dolomitization and silicification in low-energy lacustrine carbonates (Paleogene, Madrid Basin, Spain). Sedimentary Geology, 151, 107–126.CrossRefGoogle Scholar
  17. Cámara, P. (1997). The Basque-Cantabrian basin’s Mesozoic tectono-sedimentary evolution. Mémoires de la Société Géologique de France, 171, 187–191.Google Scholar
  18. Cámara, P. (2014). Excursión de Campo. Cuenca Vasco-Cantábrica, Transversal Ayoluengo-Bilbao-Bermeo. Asociación de Geólogos y Geofísicos Españoles del Petróleo, pp. 120.Google Scholar
  19. Campos-Soto, S., Benito, M. I., Mas, R., Caus, E., Cobos, A., Suarez-Gonzalez, P., et al. (2016). Revisiting the Late Jurassic-Early Cretaceous of the NW South Iberian Basin: new ages and sedimentary environments. Journal of Iberian Geology, 42, 69–94.CrossRefGoogle Scholar
  20. Campos-Soto, S., Cobos, A., Caus, E., Benito, M. I., Fernandez-Labrador, L., Suarez-Gonzalez, P., et al. (2017). Jurassic Coastal Park: a great diversity of palaeoenvironments for the dinosaurs of the Villar del Arzobispo Formation (Teruel, E Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 154–177.CrossRefGoogle Scholar
  21. Canudo, J. I. (2004). Ostrácodos. In E. Molina (Ed.), Micropaleontología (pp. 441–460). Zaragoza: Prensas Universitarias de Zaragoza.Google Scholar
  22. Capote, R., Muñoz, J. A., Simón, J. L., Liesa, C. L., & Arlegui, L. E. (2002). Alpine tectonics I: the Alpine system north of the Betic Cordillera. In W. Gibbons & M. T. Moreno (Eds.), The geology of Spain (pp. 367–400). London: Geological Society of London, Special Publication.CrossRefGoogle Scholar
  23. Casas-Sainz, A. M., Cortés-Gracia, Á. L., & Maestro-González, A. (2000). Intraplate deformation and basin formation during the tertiary within the northern Iberian plate: origin and evolution of the Almazán Basin. Tectonics, 19, 258–289.CrossRefGoogle Scholar
  24. Clemente, P. (2010). Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros Basin, Northern Spain. Revista de la Sociedad Geológica de España, 23(3–4), 101–143.Google Scholar
  25. Clemente, P., & Pérez-Arlucea, M. (1993). Depositional architecture of the Cuerda del Pozo Formation, Lower Cretaceous of the extensional Cameros Basin, north-central Spain. Journal of Sedimentary Petrology, 63, 437–452.Google Scholar
  26. Costamagna, L. G. (2016). The Middle Jurassic Alpine Tethyan unconformity and the Eastern Sardinia–Corsica Jurassic high: A sedimentary and regional analysis. Journal of Iberian Geology, 42, 311–334.CrossRefGoogle Scholar
  27. Dalrymple, R. W. (1992). Tidal depositional systems. In R. G. Walker & N. P. James (Eds.), Facies models: Response to sea level changes (pp. 195–218). St. John’s, Newfoundland: Geological Association of Canada.Google Scholar
  28. Dalrymple, R. W. (2010). Tidal depositional systems. In N. P. James & R. W. Dalrymple (Eds.), Facies models (pp. 201–231). St. John’s, Newfoundland: Geological Association of Canada.Google Scholar
  29. Davidson, S. K., Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Scuderi, L. A. (2013). Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180–181, 82–95.CrossRefGoogle Scholar
  30. DeRaaf, J. F. M., & Boersma, J. R. (1971). Tidal deposits and their sedimentary structures. Geologie en Mijnbouw, 50, 479–504.Google Scholar
  31. Di Celma, C., Fagaini, L., & Caffau, M. (2016). Marine and nonmarine deposition in a long-term low-accommodation setting: An example from the middle Pleistocene Qm2 unit, eastern central Italy. Marine and Petroleum Geology, 72, 234–253.CrossRefGoogle Scholar
  32. Diéguez, C., Hernández, J. M., & Pujalte, V. (2009). A fern-bennettitalean floral assemblage in Tithonian–Berriasian travertine deposits (Aguilar Formation, Burgos–Palencia, N Spain) and its palaeoclimatic and vegetational implications. Journal of Iberian Geology, 35(2), 127–140.Google Scholar
  33. Flügel, E. (2010). Microfacies of carbonate rocks: analysis, interpretation and application (p. 984). Heidelberg: Springer.CrossRefGoogle Scholar
  34. Fondevilla, V., Vicente, A., Battista, F., Sellés, A. G., Dinarès-Turell, J., Martín-Closas, C., et al. (2017). Geology and taphonomy of the L’Espinau dinosaur bonebed, a singular lagoonal site from the Maastrichtian of South-Central Pyrenees. Sedimentary Geology, 355, 75–92.CrossRefGoogle Scholar
  35. Fregenal-Martínez, M. A., & Meléndez, N. (1994). Sedimentological analysis of the Lower Cretaceous lithographic limestones of the ‘‘Las Hoyas’’ fossil site (Serranía de Cuenca, Iberian Range, Spain). Geobios, 16, 185–193.CrossRefGoogle Scholar
  36. Friedman, G. M. (1971). Staining. In R. E. Arver (Ed.), Procedures in sedimentary petrology (pp. 511–530). New York: Wiley.Google Scholar
  37. Friend, P. (1983). Towards the field classification of alluvial architecture or sequence. In J.D. Collinson and J. Lewint (Eds.), Modern and ancient fluvial systems (pp. 195–206). Oxford: Blackwell Science, International Association of Sedimentologists, Special Publication 6.Google Scholar
  38. García de Cortázar, A., & Pujalte, V. (1982). Litoestratigrafía y facies del Grupo Cabuérniga (Malm-Valanginiense inferior?) al S de Cantabria-NE de Palencia. Cuadernos de Geología Ibérica, 8, 5–21.Google Scholar
  39. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono-sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.CrossRefGoogle Scholar
  40. Gierlowsky-Kordesch, E. H. (2010). Lacustrine carbonates. In A. M. Alonso-Zarza & L. Tanner (Eds.), Carbonates in Continental Settings (pp. 2–50). Amsterdam: Elsevier. (Developments in Sedimentology, 61).Google Scholar
  41. Guernet, C., & Lethiers, F. (1989). Ostracodes et recherche des milieux anciens: possibilities and limites. Bulletin de la Société géologique de France, 8, 577–588.Google Scholar
  42. Gugliotta, M., Flint, S. S., Hodgson, D. M., & Veiga, G. D. (2015). Stratigraphic record of river-dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). Journal Sedimentary Research, 85, 265–284.CrossRefGoogle Scholar
  43. Guimerà, J., Alonso, Á., & Mas, J. R. (1995). Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros Basin (N. Spain). In J. G. Buchanan and P. G. Buchanan (Eds.), Basin Inversion (pp. 433–453). London: Geological Society (Special Publications, 88).CrossRefGoogle Scholar
  44. Guimerà, J., Mas, R., & Alonso, Á. (2004). Intraplate deformation in the NW Iberian Chain: Mesozoic extension and tertiary contractional inversion. Journal of the Geological Society, 161, 291–303.CrossRefGoogle Scholar
  45. Hallam, A. (1984). Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47, 195–223.CrossRefGoogle Scholar
  46. Hallam, A. (1985). A review of Mesozoic climates. Journal of the Geological Society, 142, 433–445.CrossRefGoogle Scholar
  47. Hallam, A., Crame, J. A., Mancenido, M. O., Francis, J., & Parrish, J. T. (1993). Jurassic climates as inferred from the sedimentary and fossil record. Philosophical Transactions of the Royal Society of London, B, 341, 287–296.CrossRefGoogle Scholar
  48. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, Th., de Graciansky, P. C., & Vail, P.R., et al. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In P. C. de Graciansky, J., Hardenbol, Th., Jacquin, & P.R., Vail, (Eds.), Mesozoic-cenozoic sequence stratigraphy of European basins (pp. 3e13, 763e781, and chart supplements). Tulsa: SEPM Special Publication, 60.CrossRefGoogle Scholar
  49. Hartley, A. J., Weissmann, G. S., Nichols, G. J., & Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167–183.CrossRefGoogle Scholar
  50. Klein, G.D. (1998). Clastic tidalites—a partial retrospective view. In C. R. Alexander, R. A. Davis, & V. J. Henry, (Eds.), Tidalites processes and products (pp. 5–14). Tulsa: SEPM, Special Publication, 61.CrossRefGoogle Scholar
  51. Klein, G. de V. (1985). Intertidal flats and intertidal sand bodies. In R. A. Jr. Davis, (Ed.), Coastal sedimentary environments (pp. 187–224). New York: Springer.CrossRefGoogle Scholar
  52. Klimowitz, J., Malagón, J., Quesada, S., & Serrano, A. (1999). Desarrollo y evolución de estructuras salinas mesozoicas en la parte suroccidental de la Cuenca Vasco-Cantábrica (norte de España): implicaciones exploratorias. In AGGEP (Ed.), Libro homenaje a José Ramírez del Pozo (pp. 159–166). Madrid: Asociación de Geólogos y Geofísicos Españoles del Petróleo.Google Scholar
  53. Klimowitz, J., Ruíz, G., Hernandez, E., & Pérez, A. (2005). Caracterización estratigráfica de la serie Purbeck en el área de Polientes-Sedano y las franjas plegadas de Montorio y Zamanzas (Cuenca Cantábrica). In AGGEP (Ed.), Aniversario AGGEP (Libro XXV, pp. 163–168). Madrid: Asociación de Geólogos y Geofísicos Españoles del Petróleo.Google Scholar
  54. Lacovara, K.J., Smith, J.R., Smith, J.B., & Lamanna, M.C. (2003) The Ten Thousand Islands coast of Florida: a modern analog to low-energy mangrove coasts of Cretaceous epeiric seas. In Davis, R.A., Sallenger, A., and Howd, P. (Eds.), Proceedings of the 5th international conference on coastal sediments (pp. 1773–1784). New Jersey: World Scientific Publishing.Google Scholar
  55. Lanaja, J. M., & Navarro, A. (1987). Contribución de la exploración petrolífera al conocimiento de la Geología de España (p. 465). Madrid: I.G.M.E.Google Scholar
  56. Lindholm, R. C., & Finkelman, R. B. (1972). Calcite staining: semiquantitative determination of ferrous iron. Journal of Sedimentary Petrology, 42, 239–242.CrossRefGoogle Scholar
  57. López-Martínez, N., Ardevol, L., Arribas, M. E., Civis, J., & González-Delgado, A. (1998). The geological record in non-marine environments around the K/T boundary (Tremp Fm, Spain). Bulletin de la Sociètè géologique de France, 169(1), 11–20.Google Scholar
  58. López-Martínez, N., Arribas, M. E., Robador, A., Vicens, E., & Ardèvol, Ll. (2006). Los carbonatos danienses (Unidad 3) de la Formación Tremp (pirineos sur-centrales): paleogeografía y relación con el límite Cretácico-Terciario. Revista de la Sociedad Geológica de España, 19(3–4), 233–255.Google Scholar
  59. Maloof, A. C., & Grotzinger, J. P. (2012). The Holocene shallowing-upward parasequence of north-west Andros Island, Bahamas. Sedimentology, 59, 1357–1407.CrossRefGoogle Scholar
  60. Marmi, J., Vila, B., Martín-Closas, C., & Villalba-Breva, S. (2014). Reconstructing the foraging environment of the latest titanosaurs (Fumanya dinosaur tracksite, Catalonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 380–389.CrossRefGoogle Scholar
  61. Martín-Closas, C., & Alonso, A. (1998). Estratigrafía y biostratigrafía (Charophyta) del Cretácico inferior en el sector occidental de la Cuenca de los Cameros (Cordillera Ibérica). Revista de la Sociedad Geológica de España, 11, 253–270.Google Scholar
  62. Mas, R., Alonso, A., & Guimerà, J. (1993). Evolución tectonosedimentaria de una cuenca extentional intraplaca: La cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria). Revista de la Sociedad Geológica de España, 6, 129–144.Google Scholar
  63. Mas, R., Benito, M.I., Arribas, J., Alonso, A., Arribas, M.E., Lohmann, K.C, Hernán, J., Quijada, E., Suárez, P., & Omodeo-Salé, S. (2011). Evolution of an intra-plate rift basin: the Latest Jurassic–Early Cretaceous Cameros Basin (Northwest Iberian Ranges, North Spain). In L. Pomar, & C. Arenas, (Eds.), Geo-Guías (Vol. 8, pp. 119–154), Post-Meeting field trips, 28th International Association of Sedimentologists, Sociedad Geológica de España.Google Scholar
  64. Mas, J.R., Benito, M.I., Arribas, J., Serrano, A., Alonso, A., & Alonso-Azcárate, J. (2003). The Cameros Basin: From Late Jurassic-Early Cretaceous extension to tertiary contractional inversion-implications of hydrocarbon exploration. In AAPG (Ed.), Geological Field Trip 11 (pp. 56). Barcelona: AAPG International Conference and Exhibition.Google Scholar
  65. Mas, R., Benito, M. I., Arribas, J., Serrano, A., Guimerà, J., Alonso, A., et al. (2002). La Cuenca de Cameros: desde la extensión finijurásica-eocretácica a la inversión terciaria—implicaciones en la exploración de hidrocarburos. Zubía, 14, 9–64.Google Scholar
  66. Mas, R., García, A., Salas, R., Meléndez, A., Alonso, A., Aurell, M., et al. (2004). Segunda fase de rifting: Jurásico Superior-Cretácico Inferior. In J. A. Vera (Ed.), Geología de España (pp. 503–510). Madrid: SGE-IGME.Google Scholar
  67. McIlroy, D., Flint, S., Howell, J.A., & Timms, N. (2005). Sedimentology of the tide-dominated Jurassic Lajas Formation, Neuquén Basin, Argentina. In G.D., Veiga, L.A., Spalletti, J.A., Howell, and E., Schwartz, (Eds.), The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics (pp. 83–107). London: Geological Society of London, Special Publication, 252.CrossRefGoogle Scholar
  68. Mendelssohn, I.A., & Batzer, D.P. (2006). Abiotic constraints for wetland plants and animals. In D.P., Batzer, & R.R., Sharitz, (Eds.), Ecology of freshwater and Estuarine Wetlands (pp. 82–114). Berkeley: University of California Press.CrossRefGoogle Scholar
  69. Miall, A.D. (2010). Alluvial deposits. In N.P., James, & R.W., Dalrymple, (Eds.), Facies models (Vol. 4, pp. 105–138). St. John’s, Newfoundland: Geological Association of Canada.Google Scholar
  70. Millward, D., Davies, S. J., Williamson, F., Curtis, R., Kearsey, T. I., Bennett, C. E., et al. (2018). Early Mississippian evaporites of coastal tropical wetlands. Sedimentology.  https://doi.org/10.1111/sed.12465.CrossRefGoogle Scholar
  71. Nio, S.D., & Yang, C.H. (1991). Diagnostic attributes of clastic tidal deposits: a review. In D.G., Smith, G.F., Reinson, B.A., Zaitlin, & R.A., Rahmani, (Eds.), Clastic tidal sedimentology (pp. 3–28). Canadian Society of Petroleum Geologists, Memoir 16.Google Scholar
  72. Norman, M. E. (1974). Improved techniques for selective staining of feldspar and other minerals using amaranth. US Geological Survey, Journal Research, 2, 73–79.Google Scholar
  73. Ogg, J.G., Hinnov, L.A., & Huang, C. (2012) Cretaceous. In F.M., Gradstein, J.G., Ogg, M.D., Ogg, & G. M., Schmitz, (Eds.), The geologic time scale (pp. 793–853). Amsterdam: Elsevier.CrossRefGoogle Scholar
  74. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2008). The concise geologic time scale (p. 177). Cambridge: Cambridge University Press.Google Scholar
  75. Omodeo-Salé, S., Guimerà, J., Arribas, J., & Mas, R. (2014). Tectono-stratigraphic evolution of an inverted extensional basin: the Cameros Basin (north of Spain). International Journal of Earth Sciences, 103, 1597–1620.CrossRefGoogle Scholar
  76. Pascual-Arribas, C., Sanz-Pérez, E., Hernández-Medrazo, N., & Latorre Macarrón, P. (2007). Lepidotes sp. en la aloformación Valdeprado del Cretácico Inferior (Berriasiense) de la Cuenca de Cameros (Cordillera Ibérica, Soria, España). Studia Geologica Salmanticensia, 43(2), 193–206.Google Scholar
  77. Pestrong, R. (1972). Tidal flat sedimentation at Cooley Landing southwest San Francisco Bay. Sedimentary Geology, 8, 251–288.CrossRefGoogle Scholar
  78. Platt, N. H. (1989a). Continental sedimentation in an evolving rift basin: the lower Cretaceous of the western Cameros Basin (northern Spain). Sedimentary Geology, 64, 91–109.CrossRefGoogle Scholar
  79. Platt, N. H. (1989b). Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36, 665–684.CrossRefGoogle Scholar
  80. Platt, N. H. (1990). Basin evolution and fault reactivation in the western Cameros basin, Northern Spain. Geological Society of London, Journal, 147, 165–175.CrossRefGoogle Scholar
  81. Platt, N. H. (1994). The western Cameros Basin, northern Spain: Rupelo Formation (Berriasian). In E. Gierlowky-Kordesh, & K. Kelts (Eds.) Global geological record of lake basins (Vol. 1, pp.195–202). Cambridge: Cambridge University Press.Google Scholar
  82. Platt, N.H. (1995). Sedimentation and tectonics of a syn-rift succession: upper Jurassic alluvial fans and palaeokarst at the late Cimmerian unconformity, Western Cameros Basin, northern Spain. In G. Plint (Ed.), Sedimentary facies analysis (pp. 219–236). Oxford: International Association of Sedimentologists, Special Publication, 22, Blackwell Science.Google Scholar
  83. Platt, N. H., & Pujalte, V. (1994). Correlation of Upper Jurassic–Lower Cretaceous continental sequences from the southern Biscay margin, northern Spain. Geological Society of London, Journal, 151, 715–726.CrossRefGoogle Scholar
  84. Platt, N.H., & Wright, V.P. (1991). Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In P. Anadón, L. Cabrera, & K. Kelts (Eds.), Lacustrine facies analysis (pp. 57–74). Oxford: International Association of Sedimentologists, Special Publication, 13, Blackwell Science.Google Scholar
  85. Pujalte, V. (1982). Tránsito Jurásico-Cretácico, Berriasiense, Valanginiense, Hauteriviense y Barremiense. In A. García (Ed.), El Cretácico de España (pp. 51–63). Madrid: Universidad Complutense de Madrid.Google Scholar
  86. Pujalte, V., Robles, J.C., García-Ramos, J.C., & Hernández, J.M. (2004). El Malm—Barremiense no marinos en la Cordillera Cantábrica. In J.A. Vera (Ed.), Geología de España (pp. 288–291). Madrid: Sociedad Geológica de España, Instituto Geológico y Minero de España.Google Scholar
  87. Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., Lugli, S., & Mas, R. (2014). From carbonate-sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain). Sedimentary Geology, 312, 76–98.CrossRefGoogle Scholar
  88. Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013a). New insights on stratigraphy and sedimentology of the Oncala Group (eastern Cameros Basin): implications for the paleogeographic reconstruction of NE Iberia at Berriasian times. Journal of Iberian Geology, 39, 313–334.Google Scholar
  89. Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., & Mas, R. (2013b). b. Depositional depth of laminated carbonate deposits: Insights from the Lower Cretaceous Valdeprado Formation (Cameros Basin, Northern Spain). Journal of Sedimentary Research, 83, 241–257.CrossRefGoogle Scholar
  90. Quijada, I.E, Suarez-Gonzalez, P., Benito, M.I., & Mas, R. (2016a). Tidal versus continental sandy_muddy flat deposits: Evidence_from_the Oncala Group (Early Cretaceous, N Spain). In B. Tessier, & J.Y. Reynaud (Eds.), Contributions to modern and ancient tidal sedimentology: proceedings of the tidalites 2012 conference (pp. 133–159). Chichester, West Sussex: International Association of Sedimentologists, Special Publication 47, Wiley Blackwell.Google Scholar
  91. Quijada, I.E., Suarez-Gonzalez, P., Benito, M.I., & Mas, R. (2016b). Los isótopos de S en los yesos del Grupo Oncala: evidencia de influencia marina en los depósitos carbonático-evaporíticos berriasienses de la cuenca de Cameros (La Rioja-Soria). Geo-Temas, 16, 555–558.Google Scholar
  92. Ramsar Convention (2002). Principles and guidelines for incorporating wetland issues into Integrated Coastal Zone Management (ICZM), Resolution VIII. 4 (2002), 8th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands. http://www.ramsar.org/sites/default/files/documents/pdf/res/key_res_viii_04_e.pdf.
  93. Reineck, H.E. (1972). Tidal flats. In J. K. Rigby, & W. K. Hamblin (Eds.), Recognition of ancient sedimentary environments (pp. 146–159). Tulsa: SEPM, Special Publication 16.CrossRefGoogle Scholar
  94. Reineck, H. E., & Wunderlich, F. (1968). Classification and origin of flaser and lenticular bedding. Sedimentology, 11, 99–104.CrossRefGoogle Scholar
  95. Sacristán-Horcajada, S., Arribas, M.E., & Mas, J.R. (2012c). Tipo e intensidad de los procesos pedogenéticos en los sedimentos aluviales y lacustres de la primera secuencia de depósito del Semigraben de Rupelo. Geo-Temas, 13, 112–115.Google Scholar
  96. Sacristán-Horcajada, S., Arribas, M. E., & Mas, R. (2016). Pedogenetic calcretes in early syn-rift alluvial systems (Upper Jurassic, West Cameros Basin), Northern Spain. Journal of Sedimentary Research, 86, 794–819.CrossRefGoogle Scholar
  97. Sacristán-Horcajada, S., Mas, J.R., & Arribas, M.E. (2012a). Evolución de los sistemas lacustres asociados al estadio temprano de rift en el Semigraben de Rupelo (NO de la Cuenca de Cameros, España): subsidencia e influencia marina. Geo-temas, 13, 89–92.Google Scholar
  98. Sacristán-Horcajada, S., Mas, J.R., & Arribas, M.E. (2012b). Marine influence in the third depositional sequence (Lower-middle Berriasian) of the mainly continental synrift sedimentary record in the western Cameros Basin, (N Spain). Abstractbook, 29th IAS Meeting of Sedimentology 2012, Schladming, Austria.Google Scholar
  99. Sacristán-Horcajada, S., Mas, R., & Arribas, M. E. (2015). Early syn-rift evolution in the W Cameros Basin (Upper Jurassic, NW Iberian Range) Spain. Journal of Sedimentary Research, 85, 794–819.CrossRefGoogle Scholar
  100. Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian chain). In P.A. Ziegler, W. Cavazza, A.H.F. Robertson, S. Crasquin-Soleau (Eds.), Peri-Tethys Memoir 6: Peri-tethyan rift/wrench basins and passive Margins (pp. 145–186). Paris: Mémoires du Museum National d’Histoire Naturelle, 186.Google Scholar
  101. Salomon, J. (1982). El Cretácico inferior de Cameros-Castilla. In A. García (Ed.), El Cretacico de España (pp. 345–387). Madrid: Universidad Complutense de Madrid.Google Scholar
  102. Schudack, M. (1987). Charophytenflora und fazielle Entwicklung der Grenzschichten mariner Jura/Wealden in den Nordwestlichen Iberischen Ketten (mit Vergleichen zu Asturien und Kantabrien). Palaeontographica. Abt. B, 204, 108.Google Scholar
  103. Schudack, U., & Schudack, M. (2009). Ostracod biostratigraphy in the Lower Cretaceous of the Iberian Chain (eastern Spain). Journal of Iberian Geology, 35, 141–168.Google Scholar
  104. Schudack, U., & Schudack, M. (2012). Non-Cypridean Ostracoda from the lower Cretaceous of the Iberian Chain (Spain). Neues Jahrbuch für Geologie und Paläontologie, 266(3), 251–271.CrossRefGoogle Scholar
  105. Semeniuk, V. (1981). Sedimentology and the stratigraphic sequence of a tropical tidal flat, northwestern Australia. Sedimentary Geology, 29, 195–221.CrossRefGoogle Scholar
  106. Suarez-Gonzalez, P., Benito, M.I., Mas, R., Quijada, I.E., & Campos-Soto, S. (2016b). Influencia del Keuper y de la estructuración tardivarisca en la arquitectura de las unidades sin-extensionales del borde norte de la Cuenca de Cameros. Geotemas, 16, 185–188.Google Scholar
  107. Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, J. R. (2013). Eustatic versus tectonic control in an intraplate rift basin (Leza Fm, Cameros Basin). Chronostratigraphic and paleogeographic implications for the Aptian of Iberia. Journal of Iberian Geology, 39, 285–312.Google Scholar
  108. Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., & Mas, R. (2015). Sedimentology of ancient coastal wetlands: Insights from a Cretaceous multifaceted depositional system. Journal of Sedimentary Research, 85, 95–117.CrossRefGoogle Scholar
  109. Suarez-Gonzalez, P., Quijada, I.E., Benito, M.I., & Mas, R. (2016a). Do stromatolites need tides to trap ooids? Insights from a Cretaceous system of coastal-wetlands. In B. Tessier, & J.Y. Reynaud (Eds.). Contributions to modern and ancient tidal sedimentology. Proceedings of the tidalites 2012 conference (pp. 161–190). Chichester, West Sussex: International Association of Sedimentologists, Special Publication 47, Wiley Blackwell.CrossRefGoogle Scholar
  110. Suarez-Gonzalez, P., Quijada, I. E., Benito, M. I., Mas, J. R., Merinero, R., & Riding, R. (2014). Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach. Sedimentary Geology, 300, 11–27.CrossRefGoogle Scholar
  111. Tessier, B. (1993). Upper intertidal rhythmites in the Mont-Saint-Michel Bay (NW France): Perspectives for paleoreconstruction. Marine Geology, 110, 355–367.CrossRefGoogle Scholar
  112. Thompson, R.W. (1968). Tidal flat sedimentation on the Colorado River Delta northwest Gulf of California (Vol. 107, pp. 133). Colorado: Geological Society of American Memoir.Google Scholar
  113. Torcida Fernández-Baldor, F., Díaz-Matínez, I., Contreras, R., Huerta, P., Montero, D., & Urién, V. (2015). Unusual sauropod tracks in the Jurassic-Cretaceous interval of the Cameros Basin (Burgos, Spain). Journal of Iberian Geology, 41(1), 141–154.Google Scholar
  114. Tugend, J., Manatschal, G., & Kusznir, N. J. (2015). Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology, 43, 15–18.CrossRefGoogle Scholar
  115. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics.  https://doi.org/10.1002/2014TC003529.CrossRefGoogle Scholar
  116. Vakhrameev, V. A. (1991). Jurassic and Cretaceous floras and climates of the Earth (p. 318). Cambridge: Cambridge University Press.Google Scholar
  117. Vegas, R., & Banda, E. (1982). Tectonic framework and alpine evolution of the Iberian Peninsula. Earth Evolution Sciences, 4, 320–343.Google Scholar
  118. Warren, J. K. (2016). Evaporites: A geological compendium (p. 1813). Cham: Springer.Google Scholar
  119. Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., et al. (2010). Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38, 39–42.CrossRefGoogle Scholar
  120. Wilkinson, B. H., & Drummond, C. N. (2004). Facies mosaics across the Persian Gulf and around Antigua: stochastic and deterministic products of shallow-water sediment accumulation. Journal of Sedimentary Research, 74, 513–526.CrossRefGoogle Scholar
  121. Wolanski, E., Brinson, M.M., Cahoon, D.R., & Perillo, G.M.E. (2009). Coastal wetlands: a synthesis. In G.M.E. Perillo, E. Wolanksi, D.R. Cahoon, & M.M. Brinson (Eds.), Coastal wetlands (pp. 1–62). Amsterdam: Elsevier.Google Scholar
  122. Ziegler, A. M., Parrish, J. M., Jiping, Y., Gyllenhaal, E. D., Rowley, D. B., Parrish, J. T., et al. (1993). Early mesozoic phytogeography and climate. Philosophical Transactions. Biological Sciences, 341, 297–305.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ramón Mas
    • 1
    • 3
  • Mª. Eugenia Arribas
    • 2
  • Laura González-Acebrón
    • 1
  • I. Emma Quijada
    • 4
  • Sonia Campos-Soto
    • 1
    • 3
  • Pablo Suarez-Gonzalez
    • 5
  • Sara Sacristán-Horcajada
    • 1
  • José Arribas
    • 2
    • 3
  • M. Isabel Benito
    • 1
    • 3
  • Carlos Pérez-Garrido
    • 2
  • Ángela Alonso
    • 6
  1. 1.Departamento de Geodinámica, Estratigrafía y PaleontologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Mineralogía y PetrologíaUniversidad Complutense de MadridMadridSpain
  3. 3.Instituto de Geociencias IGEO (CSIC, UCM)MadridSpain
  4. 4.Departamento de GeologíaUniversidad de OviedoOviedoSpain
  5. 5.Área de GeologíaUniversidad Rey Juan CarlosMóstolesSpain
  6. 6.Department of Navigation and Earth SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations