Advertisement

Inequalities for the polar derivative of a polynomial

  • M. H. GulzarEmail author
  • B. A. Zargar
  • Rubia Akhter
Original Research Paper
  • 6 Downloads

Abstract

Let P(z) be a polynomial of degree n having all its zeros in \(|z|\le 1\), then according to Turan (Compositio Mathematica 7:89–95, 2004)
$$\begin{aligned} \max \limits _{|Z|=1}|P'(z)|\ge \frac{n}{2}\max \limits _{|Z|=1}|P(z)|. \end{aligned}$$
In this paper, we shall use polar derivative and establish a generalisation and an extension of this result. Our results also generalize variety of other results.

Keywords

Polynomial Polar derivative Inequalities 

Mathematics Subject Classification

30A10 30C15 

Notes

Acknowledgements

This work was supported by NBHM, India, under the research project number 02011/36/2017/R&D-II.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aziz, A. 1988. Inequalities for the polar derivative of a polynomial. Journal of Approximation Theory 55: 183–193.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aziz, A., and N.A. Rather. 2003. Inequalities for the polar derivative of a polynomial with restricted zeros. Math Bulk 17: 15–28.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aziz, A., and W.M. Shah. 1998. Inequalities for the polar derivative of a polynomial. Indian Journal of Pure and Applied Mathematics 29: 163–173.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bernstein, S. 1930. Sur la limitation des derivees des polnomes. Comptes Rendus de l’Académie des Sciences 190: 338–341.zbMATHGoogle Scholar
  5. 5.
    Dubinin, V.N. 2000. Distortion theorems for polynomials on the circle. Matematicheskii Sbornik 191 (12): 1797–1807.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lax, P.D. 1994. Proof of a conjecture of P. Erdös on the derivative of a polynomial. American Mathematical Society 50 (8): 509–513.zbMATHGoogle Scholar
  7. 7.
    Shah, W.M. 1996. A generalization of a theorem of P. Turan. Journal of the Ramanujan Mathematical Society 1: 29–35.MathSciNetGoogle Scholar
  8. 8.
    Turan, P. 1939. Über die ableitung von polynomem. Compositio Mathematica 7: 89–95.MathSciNetzbMATHGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2020

Authors and Affiliations

  1. 1.Department of MathematicsKashmir UniversitySrinagarIndia

Personalised recommendations