Shift invariant spaces in \(L^2({\mathbb {R}},{\mathbb {C}}^m)\) with m generators

  • Anila John
  • S. H. Kulkarni
  • R. RadhaEmail author
S.I.: ICWAA-2018


The paper deals with sampling and reconstruction of vector valued functions in a shift invariant space with multiple generators. Unlike the case of a shift invariant space with multiple generators in \(L^{2}(\mathbb {R})\), when the dimension of the vectors is the same as the number of generators, \(\mathbb {Z}\) turns out to be a stable set of sampling. A sampling formula for reconstructing a function from its samples at integer points is derived and the problem of sampling on a perturbed set of integers is discussed. An illustration of sampling and reconstruction of a function in \(L^{2}(\mathbb {R},\mathbb {R}^{2})\) on a finite interval is given using Matlab.


Block Laurent operator Reproducing kernel Hilbert space Stable set of sampling Vector valued Zak transform 

Mathematics Subject Classification

42C15 94A20 



The authors would like to thank the referee for the valuable suggestions which helped in greatly improving the manuscript. The authors would also like thank Shri. Santi Ranjan Das, Dept. of Mathematics, IIT Madras for important discussions in connection with theorem 4.1.


  1. 1.
    Acosta-Reyes, E., A. Aldroubi, and I. Krishtal. 2009. On stability of sampling-reconstruction models. Advances in Computational Mathematics 31 (1–3): 5–34. Scholar
  2. 2.
    Aldroubi, A., and K. Gröchenig. 2001. Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Review 43 (4): 585–620.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aldroubi, A., and I. Krishtal. 2006. Robustness of sampling and reconstruction and Beurling–Landau-type theorems for shift-invariant spaces. Applied and Computational Harmonic Analysis 20 (2): 250–260. Scholar
  4. 4.
    Aldroubi, A., Q. Sun, and W.S. Tang. 2001. p-Frames and shift invariant subspaces of \(l^{p}\). Journal of Fourier Analysis and Applications 17 (1): 1–21. Scholar
  5. 5.
    Aldroubi, A., Q. Sun, and W.S. Tang. 2004. Non-uniform average sampling and reconstruction in multiply generated shift invariant spaces. Constructive Approximation 20 (2): 173–189. Scholar
  6. 6.
    Balan, Radu. 2000. Multiplexing of signals using superframes. Wavelets Applications in Signal and Image Processing VIII 4119: 118–130.CrossRefGoogle Scholar
  7. 7.
    Butzer, P.L., and R.L. Stens. 1992. Sampling Theory for Not Necessarily Band Limited Functions. SIAM Review 34 (1): 40–53.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duffin, R.J., and J.J. Eachus. 1942. Some notes on an expansion theorem of Paley and Wiener. Bulletin of the American Mathematical Society 48 (12): 850–855.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eldar, Y.C. 2015. Sampling Theory - Beyond Band Limited Systems. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  10. 10.
    Führ, H. and J. Xian. 2014. Relevant sampling in finitely generated shift invariant spaces, arXiv:1410.4666.Google Scholar
  11. 11.
    García, A.G., G. Pérez-Villalón, and A. Portal. 2005. Riesz basis in \(L^{2}(0,1)\) related to sampling in shift invariant spaces. Journal of Mathematical Analysis and Applications 308 (2): 703–713.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gohberg, I., S. Goldberg, and M.A. Kaashoek. 1993. Classes of Linear Operators, vol. II. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
  13. 13.
    Gröchenig, K., and H. Schwab. 2003. Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces. SIAM Journal on Matrix Analysis and Applications 24 (4): 899–913. Scholar
  14. 14.
    Kadec, M.I. 1964. The exact value of Paley–Wiener constants. Soviet Mathematics Doklady 5: 559–561.Google Scholar
  15. 15.
    Kulkarni, S.H., R. Radha, and S. Sivananthan. 2009. Non Uniform Sampling Problem. Journal of Applied Functional Analysis 4 (1): 58–74.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Landau, H. 1967. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Mathematica 117: 37–52.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, Y.M., and G.G. Walter. 1995. Irregular sampling in wavelet subspaces. Journal of Fourier Analysis and Applications 2 (2): 181–189.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Marvasti, F. 2001. Non-Uniform Sampling Theory and Practice. New York: Springer Science + Business Media.zbMATHGoogle Scholar
  19. 19.
    Mallat, S.G. 1989. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence II (7): 674–691.CrossRefGoogle Scholar
  20. 20.
    Meyer, Y. 1993. Wavelets: Algorithms and Applications. Philadelphia: SIAM.zbMATHGoogle Scholar
  21. 21.
    Nashed, M.Z., and Q. Sun. 2010. Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^{p}(\mathbb{R}^{d})\). Journal of Functional Analysis 258 (7): 2422–2452. Scholar
  22. 22.
    Paley, R.E.A.C., and N. Weiner. 1934. Fourier transforms in the complex domain, vol. 19, p. 113. New York: American Mathematical Society.Google Scholar
  23. 23.
    Radha, R., K. Sarvesh, and S. Sivananthan. 2019. Invertibility of Laurent operators and shift invariant spaces with finitely many generators. Applicable Analysis. Scholar
  24. 24.
    Radha, R., K. Sarvesh, and S. Sivananthan. 2018. Sampling and Reconstruction in a Shift Invariant Space with Multiple Generators. Numerical Functional Analysis and Optimization. Scholar
  25. 25.
    Radha, R., and S. Sivananthan. 2009. Local reconstruction of a function from a non uniform sampled data. Applied Numerical Mathematics 59 (2): 393–403. Scholar
  26. 26.
    Selvan, A.A., and R. Radha. 2015. Sampling and Reconstruction in Shift-Invariant Spaces on \(\mathbb{R}^{d}\). Annali di Matematica Pura ed Applicata 194: 1683–1706.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sun, Q. 2007. Non-uniform average sampling and reconstruction of signals with finite rate innovation. SIAM Journal on Mathematical Analysis 38 (5): 1389–1422. Scholar
  28. 28.
    Sun, Q. 2010. Local reconstruction for sampling in shift invariant spaces. Advances in Computational Mathematics 32 (3): 335–352. Scholar
  29. 29.
    Sun, W., and X. Zhou. 1999. Sampling theorem for multiwavelet spaces. Chinese Science Bulletin 44 (14): 1283–1286.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun, W., and X. Zhou. 2002. Average sampling in spline subspaces. Applied Mathematics Letters 15 (2): 233–237.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xian, J., and S. Li. 2007. Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications. Applied and Computational Harmonic Analysis 23 (2): 171–180. Scholar
  32. 32.
    Zhang, Q., B. Liu, and R. Li. 2017. Dynamical sampling in multiply generated shift invariant spaces. Applicable Analysis 96 (5): 760–770. Scholar
  33. 33.
    Zuhair, N.M., Q. Sun, and J. Xian. 2012. Convolution sampling and reconstruction of signals in a reproducing kernel subspace. Proceedings of the American Mathematical Society 141 (6): 1995–2007.MathSciNetCrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2020

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Naval Physical and Oceanographic LaboratoryDefence Research and Development OrganisationKochiIndia

Personalised recommendations