The Journal of Analysis

, Volume 26, Issue 2, pp 313–322 | Cite as

Quaternionic fractional wavelet transform

  • R. RoopkumarEmail author


The novel fractional wavelet transform is extended to the space of square integrable quaternion valued functions on \({\mathbb {R}}\) and its properties like linearity, Parseval’s identity and inversion formula are derived.


Wavelet transform Fractional Fourier transform Quaternion valued functions 

Mathematics Subject Classification

Primary 42A38; Secondary 46S10 44A15 42C40 



The author thanks the anonymous referee for his/her valuable comments on the presentation of this paper.


  1. 1.
    Akila, L., and R. Roopkumar. 2014. A natural convolution of quaternion valued functions and its applications. Applied Mathematics and Computation 242 (1): 633–642.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akila, L., and R. Roopkumar. 2016. Ridgelet transform on quaternion valued functions. International Journal of Wavelets, Multiresolution and Information Processing 14 (1):1650006 (18 pages).CrossRefGoogle Scholar
  3. 3.
    Akila, L., and R. Roopkumar. 2016. Multidimensional quaternionic Gabor transforms. Advances in Applied Clifford Algebras 25: 771–1002.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akila, L., and R. Roopkumar. 2016. Quaternionic Stockwell transform. Integral Transforms and Special Functions 27 (6): 484–504.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Akila, L., and R. Roopkumar. 2017. Quaternionic curvelet transform. Optik 131: 255–266.CrossRefGoogle Scholar
  6. 6.
    Almeida, L.B. 1994. The fractional order Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing 42 (11): 3084–3091.CrossRefGoogle Scholar
  7. 7.
    Almeida, L.B. 1997. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Processing Letters 4 (1): 15–17.CrossRefGoogle Scholar
  8. 8.
    Assefa, D., L. Mansinha, K.F. Tiampo, H. Rasmussen, and K. Abdella. 2010. Local quaternion Fourier transform and color image texture analysis. Signal Processing 90: 1825–1835.CrossRefGoogle Scholar
  9. 9.
    Guanlei, X., W. Xiaotong, and X. Xiaogang. 2008. Fractional quaternion Fourier transform. Signal Processing 88 (10): 2511–2517.CrossRefGoogle Scholar
  10. 10.
    Hamilton, W.R. 1866. Elements of quaternions, Longmans. London: Green, & Company.Google Scholar
  11. 11.
    He, J., and B. Yu. 2004. Continuous wavelet transforms on the space \(L^2(R, H, dx)\). Applied Mathematics Letters 17: 111–121.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Luchko, Y.F., H. Martínez, and J.J. Trujillo. 2008. Fractional Fourier transform and some of its applications. Fractional Calculus and Applied Analysis 11 (4): 457–470.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mawardi, B., R. Ashino, and R. Vaillancourt. 2011. Two-dimensional quaternion wavelet transform. Applied Mathematics and Computation 218: 10–21.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mawardi, B., E. Hitzer, R. Ashino, and R. Vaillancourt. 2010. Windowed Fourier transform of two-dimensional quaternionic signals. Applied Mathematics and Computation 216: 2366–2379.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mawardi, B., R. Ashino, and R. Vaillancourt. 2014. Continuous quaternion Fourier and wavelet transforms. International Journal of Wavelets, Multiresolution and Information Processing 12: 1460003. (21 pages).MathSciNetCrossRefGoogle Scholar
  16. 16.
    McBride, A.C. 1979. Fractional calculus and integral transforms of generalised functions. London: Pitman Publishing.zbMATHGoogle Scholar
  17. 17.
    McBride, A.C., and F.H. Kerr. 1987. On Namias’s fractional Fourier transforms. IMA Journal of Applied Mathematics 39 (2): 159–175.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mendlovic, D., Z. Zalevsky, D. Mas, J. García, and C. Ferreira. 1997. Fractional wavelet transform. Applied Optics 36 (20): 4801–4806.CrossRefGoogle Scholar
  19. 19.
    Namias, V. 1980. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics 25 (3): 241–265.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Roopkumar, R. 2016. Quaternionic one-dimensional fractional Fourier transform. Optik 127: 11657–11661.CrossRefGoogle Scholar
  21. 21.
    Sangwine, S.J. 1996. Fourier transforms of colour images using quaternion or hypercomplex numbers. Electronics Letters 32: 1979–1980.CrossRefGoogle Scholar
  22. 22.
    Sangwine, S.J. 1998. Colour image edge detector based on quaternion convolution. Electronics Letters 34: 969–971.CrossRefGoogle Scholar
  23. 23.
    Shi, J., N. Zhang, and X. Liu. 2012. A novel fractional wavelet transform and its applications. Science China Information Sciences 55 (6): 1270–1279.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Soulard, R., and P. Carré. 2011. Quaternionic wavelets for texture classification. Pattern Recognition Letters 32: 1669–1678.CrossRefGoogle Scholar
  25. 25.
    Subakan, O.N., and B.C. Vemuri. 2011. A quaternion framework for color image smoothing and segmentation. International Journal of Computer Vision 91: 233–250.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tao, R., Y.-L. Li, and Y. Wang. 2010. Short-time fractional Fourier transform and its applications. IEEE Transactions on Signal Processing 58 (5): 2568–2580.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tobar, F.A., and D.P. Mandic. 2014. Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions. IEEE Transactions on Information Theory 60 (9): 5736–5749.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zayed, A.I. 1998. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Processing Letters 5 (4): 101–103.CrossRefGoogle Scholar
  29. 29.
    Zayed, A.I. 1998. Fractional fourier transforms of generalized functions. Integral Transforms and Special Functions 7: 299–312.MathSciNetCrossRefGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2018

Authors and Affiliations

  1. 1.Department of MathematicsCentral University of Tamil NaduThiruvarurIndia

Personalised recommendations