Advertisement

The Journal of Analysis

, Volume 27, Issue 1, pp 39–53 | Cite as

Hesitancy fuzzy magic labeling graph

  • M. A. RifayathaliEmail author
  • A. Prasanna
  • S. Ismail Mohideen
Original Research Paper
  • 25 Downloads

Abstract

The objective of this paper is to introduce the concept of magic labeling in hesitancy fuzzy graph and finding results in hesitancy fuzzy graphs like path, cycle and star graphs by applying the concept of hesitancy fuzzy magic labeling along with some properties of hesitancy fuzzy magic labeling graph are discussed.

Keywords

Magic labeling Fuzzy graph Hesitancy fuzzy graph 

Mathematics Subject Classification

05C72 05C78 03E72 

Notes

Acknowledgements

The authors are highly grateful to the anonymous referee for the valuable suggestions regarding the paper.

References

  1. 1.
    Akram, M. 2011. Bipolar fuzzy graphs. Information Sciences 181: 5548–5564.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akram, M., and W.A. Dudek. 2011. Interval-valued fuzzy graphs. Computers and Mathematics with Applications 61: 289–299.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Akram, M., and W.A. Dudek. 2013. Intuitionistic fuzzy hyper graphs with applications. Information Sciences 218: 182–193.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akram, M., and Arooj Adeel. 2016. m-Polar fuzzy labeling graphs with application. Mathematics in Computer Science 10: 387–402.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Akram, M., and Arooj Adeel. 2017. m-Polar fuzzy graphs and m-polar fuzzy line graphs. Journal of Discrete Mathematical Sciences and Cryptography 20: 1597–1617.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, Krassimir T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87–96.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Atanassov, Krassimir T. 1999. Intuitionistic Fuzzy Sets: Theory and Applications. New York: Physica.CrossRefzbMATHGoogle Scholar
  8. 8.
    Euler, L. 1736. Solutio problematis and geometriam situs pertinentis. Commentarii Academiae Scientarum Imperialis Petropolitanae 8: 128–140.Google Scholar
  9. 9.
    Gallian, J.A. 2014. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 7: 1–384 (7th edition).MathSciNetGoogle Scholar
  10. 10.
    Kishore Kumar, P.K., S. Lavanya, Hossein Rashmanlou, and Mostafa Nouri Jouybari. 2017. Magic labeling on interval-valued intuitionistic fuzzy graphs. Journal of Intelligent & Fuzzy Systems 33: 3999–4006.CrossRefGoogle Scholar
  11. 11.
    Kotzig, A., and A. Rosa. 1970. Magic valuation of finite graph. Canadian Mathematical Bulletin 13: 451–461.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mishra, S.N., and Anita Pal. 2016. Magic labeling of interval-valued fuzzy graph. Annals of Fuzzy Mathematics and Informatics 11: 273–282.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nagoor Gani, A., and D. Rajalaxmi. 2012. Properties of fuzzy labeling graph. Applied Mathematical Sciences 6: 3461–3466.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nagoor Gani, A., and D. Rajalaxmi. 2014. Fuzzy labeling tree. International Journal of Pure and Applied Mathematics 90: 131–141.Google Scholar
  15. 15.
    Nagoor Gani, A., M. Akram, and D. Rajalaxmi. 2014. Novel properties of fuzzy labelling graphs. Journal of Mathematics 2014: 1–6.CrossRefGoogle Scholar
  16. 16.
    Parvathi, R., and M.G. Karunambigai. 2006. Intuitionistic fuzzy graphs. Computational Intelligence - Theory and Applications 6: 139–150.CrossRefGoogle Scholar
  17. 17.
    Parvathi, R., M.G. Karunambigai, and K.T. Atanassov. 2009. Operations on intuitionistic fuzzy graphs. In Proceedings of the FUZZ-IEEE 2009, International Conference on fuzzy systems, Jeju Island, Korea, 20–24.Google Scholar
  18. 18.
    Pathinathan, T., J. Jon Arockiaraj, and J. Jesintha Rosline. 2015. Hesitancy fuzzy graphs. Indian Journal of Science and Technology 8: 1–5.CrossRefGoogle Scholar
  19. 19.
    Pathinathan, T., and J. Jon Arockiaraj. 2016. Various Cartesian products of vertex degree and edge degree in hesitancy fuzzy graphs. International Journal of Multidisciplinary Research and Modern Education 2: 2454–6119.Google Scholar
  20. 20.
    Pathinathan, T., J. Jon Arockiaraj, and E. Mike Dison. 2016. Constant hesitancy fuzzy graphs. Global Journal of Pure and Applied Mathematics 12: 287–292.Google Scholar
  21. 21.
    Pathinathan, T., and J. Jon Arockiaraj. 2016. On regular hesitancy fuzzy graphs. Global Journal of Pure and Applied Mathematics 12: 512–518.Google Scholar
  22. 22.
    Rosenfeld, A. 1975. Fuzzy Graphs—In Fuzzy Sets and Their Applications to Cognitive and Decision Processes, 77–95. New York: Academic Press.CrossRefGoogle Scholar
  23. 23.
    Sedlacek, J. 1963. Problem 27. Theory of graphs and its applications. In Proceedings of the Symposium held in Smolenice, Prague, June 1963, 163–167.Google Scholar
  24. 24.
    Mehra, Seema, and Manjeet Singh. 2017. Some results on intuitionistic fuzzy magic labeling graphs. Aryabhatta Journal of Mathematics and Informatics 09: 931–938.Google Scholar
  25. 25.
    Torra, V. 2010. Hesitant fuzzy sets. International Journal of Intelligent Systems 25: 529–539.zbMATHGoogle Scholar
  26. 26.
    Zadeh, L.A. 1965. Fuzzy sets. Information and Computation 8: 338–353.MathSciNetzbMATHGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2018

Authors and Affiliations

  • M. A. Rifayathali
    • 1
    Email author
  • A. Prasanna
    • 1
  • S. Ismail Mohideen
    • 1
  1. 1.PG and Research Department of MathematicsJamal Mohamed College (Autonomous)TiruchirappalliIndia

Personalised recommendations