The Journal of Analysis

, Volume 26, Issue 1, pp 135–150 | Cite as

Area distortion under some orientation preserving harmonic maps

Original Research Paper


We study the distortion of area under the class of orientation preserving harmonic maps into the unit disk and the class of harmonic univalent maps onto the unit disk.


Hyperbolic metric Pseudo-hyperbolic metric Harmonic univalent map 

Mathematics Subject Classification

Primary 30C62 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest. The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.


  1. 1.
    Astala, K. 1994. Area distortion for quasiconformal mappings. Acta Mathematica 173: 37–60.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    . Beardon and D. Minda, The hyperbolic metric and geometric function theory. In: Proceedings of the International Workshop on Quasiconformal Mappings and their Applications (IWQCMA05).Google Scholar
  3. 3.
    Eremenko, A., and D.H. Hamilton. 1995. On the area distortion of quasiconformal mappings. Proceeding of the AMS 123 (9): 2793–2797.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Garnett, Bounded analytic functions, Springer, 2007.Google Scholar
  5. 5.
    Gehring, F.W., and E. Reich. 1966. Area distortion under quasiconformal mappings. Annales Academiae Scientiarum Fennicae 388: 1–14.MathSciNetMATHGoogle Scholar
  6. 6.
    Heinz, E. 1959. On one-to-one harmonic mappings. Pacific Journal of Mathematics 9: 101105.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lewy, H. 1936. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bulletin of the American Mathematical Society 42: 689–692.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Abu-Muhanna, Y. 2010. Convex and harmonic Bohr’s inequalities. Complex Variables and Elliptic functions Journal 55 (11): 1071–1078.CrossRefMATHGoogle Scholar
  9. 9.
    Abu-Muhanna, Y. 1999. On harmonic univalent functions. Complex Variables Journal 139 (4): 341–348.MathSciNetMATHGoogle Scholar
  10. 10.
    Duren, P. 1983. Univalent functions. Heidelberg: Springer.MATHGoogle Scholar
  11. 11.
    Duren, P., and G. Schober. 1989. Linear extremal problems for harmonic mappings of the disk. Proceedings of the American Mathematical Society 105 (4): 967–973.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hedenmalm, H., B. Korenblum, and K. Zhu. 2000. Theory of Bergman Spaces. New York: Springer.CrossRefMATHGoogle Scholar
  13. 13.
    Heinonen, J. 2001. Lectures on analysis on metric spaces. Heidelberg: Springer.CrossRefMATHGoogle Scholar
  14. 14.
    Koh, N.-T., and L.V. Kovalev. 2011. Area contraction for harmonic automorphisms of the disk. Bulletin of the London Mathematical Society 43: 91–96.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kalaj, D., and M. Vuorinen. 2012. On harmonic functions and the Schwarz lemma. Proceedings of the American Mathematical Society 140 (1): 161–165.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, College of Arts and SciencesAmerican University of SharjahSharjahUnited Arab Emirates

Personalised recommendations