The Journal of Analysis

, Volume 26, Issue 1, pp 27–37 | Cite as

New congruences for k-tuples t-core partitions

  • Nipen SaikiaEmail author
  • Chayanika Boruah
Original Research Paper


Let \(A_{t,k}(n)\) denote the number of partition k-tuples of n where each partition is t-core. In this paper, we prove some Ramanujan-type congruences for the partition function \(A_{t,k}(n)\) when \((t,k)=(3,4)\), (3,9), (4,8), (5, 6), (8, 4), (9, 3) and (9, 6) by employing q-series identities.


t-core partition k-tuple Partition congruence q-series identities 

Mathematics Subject Classification

05A17 11P83 



The authors are extremely grateful to the anonymous referee for his/her valuable suggestions and comments.


  1. 1.
    Ahmed, Z., and N.D. Baruah. 2015. Congruences modulo \(p^2\) and \(p^3\) for \(k\) dots bracelet partitons with \(k=mp^s\). Journal of Number Theory 151 (5): 129–146.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baruah, N.D., and K. Nath. 2015. Infinite families of arithmetic identities and congruences for bipartitions with 3-cores. Journal of Number Theory 149: 92–104.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baruah, N.D., and B.K. Sarmah. 2013. Identities and congruences for the general partition and Ramanujan’s tau functions. Indian Journal of Pure and Applied Mathematics 44 (5): 643–671.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baruah, N.D., and B.K. Sarmah. 2012. Identities for self-conjugate 7 and 9-core partitions. International Journal of Number Theory 8 (3): 653–667.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baruah, N.D., and K. Nath. 2014. Some results on 3-cores. Proceedings of the American Mathematical Society 142 (2): 441–448.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baruah, N.D., and K.K. Ojah. 2011. Some congruences deducible from Ramanujan’s cubic continued fractions. International Journal of Number Theory 7: 1331–1343.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berndt, B.C. 1991. Ramanujan’s notebooks, Part III. New York: Springer.CrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, S.C. 2013. Congruences for \(t\)-core partitions functions. Journal of Number Theory 133 (12): 4036–4046.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chern, Shane. 2016. Formulas for partition \(k\) tuples with \(t\)-cores. Journal of Mathematical Analysis and Applications 437 (2): 841–852.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hirschhorn, M.D., and J.A. Sellers. 2009. Elementary proofs of facts about 3-cores. Bulletin of the Australian Mathematical Society 79: 507–512.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hirschhorn, M.D. 2000. An identity of Ramanujan, and application in \(q\)-series from a contemporary perspective. Contemporary Mathematics 254: 229–234.CrossRefGoogle Scholar
  12. 12.
    Wang, L. 2015. Arithmetic identities and congruences for partition triples with \(3\)-cores. International Journal of Number Theory 12: 995–1010.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xia, E.X.W., and O.X.M. Yao. 2013. Analogues of Ramanujan’s partition identities. The Ramanujan Journal 31: 373–396.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xia, E.X.W. 2017. Congruence modulo 9 and 27 for overpartitions. The Ramanujan Journal 42(2): 301–323.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yao, O.X.M. 2015. Infinite families of congruences modulo 3 and 9 for bipartitions with 3-cores. Bulletin of the Australian Mathematical Society 91 (1): 47–52.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Forum D'Analystes, Chennai 2017

Authors and Affiliations

  1. 1.Department of MathematicsRajiv Gandhi UniversityDoimukhIndia

Personalised recommendations